Title | Estimates for eigenvalues of the Neumann and Steklov problems |
Author | |
Corresponding Author | Mao,Jing |
Publication Years | 2023
|
DOI | |
Source Title | |
ISSN | 2191-9496
|
EISSN | 2191-950X
|
Volume | 12Issue:1 |
Abstract | We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue. |
Keywords | |
URL | [Source Record] |
Indexed By | |
Language | English
|
SUSTech Authorship | Others
|
Funding Project | Research Team Project of Jingchu University of Technology[TD202006]
; Research Project of Jingchu University of Technology["YB202010","ZX202002","ZX202006"]
; NSF of Hubei Province[2022CFB527]
; NSF of China[11801496]
; CNPq, Brazil["307089/2014-2","306146/2014-2"]
|
WOS Research Area | Mathematics
|
WOS Subject | Mathematics, Applied
; Mathematics
|
WOS Accession No | WOS:001035385700001
|
Publisher | |
Scopus EID | 2-s2.0-85166409073
|
Data Source | Scopus
|
Citation statistics |
Cited Times [WOS]:0
|
Document Type | Journal Article |
Identifier | http://kc.sustech.edu.cn/handle/2SGJ60CL/560190 |
Department | Department of Mathematics |
Affiliation | 1.School of Mathematics and Physics Science,Jingchu University of Technology,Jingmen,448000,China 2.Faculty of Mathematics and Statistics,Key Laboratory of Applied Mathematics of Hubei Province,Hubei University,Wuhan,430062,China 3.Department of Mathematics,Instituto Superior Técnico,University of Lisbon,Lisbon,Av. Rovisco Pais,1049-001,Portugal 4.Departamento de Matemática,Universidade de Brasilia,Brasilia,DF,70910-900,Brazil 5.Department of Mathematics,Southern University of Science and Technology,Shenzhen,Guandong,518055,China |
Recommended Citation GB/T 7714 |
Du,Feng,Mao,Jing,Wang,Qiaoling,et al. Estimates for eigenvalues of the Neumann and Steklov problems[J]. Advances in Nonlinear Analysis,2023,12(1).
|
APA |
Du,Feng,Mao,Jing,Wang,Qiaoling,Xia,Changyu,&Zhao,Yan.(2023).Estimates for eigenvalues of the Neumann and Steklov problems.Advances in Nonlinear Analysis,12(1).
|
MLA |
Du,Feng,et al."Estimates for eigenvalues of the Neumann and Steklov problems".Advances in Nonlinear Analysis 12.1(2023).
|
Files in This Item: | There are no files associated with this item. |
|
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment