中文版 | English

Audible Sound Sensing Enhancement via Structural Coupled Designs of Broadband Metamaterial

Name pinyin
School number
Electrical and Computer Engineering
Mentor unit
Publication Years
Submission date
Place of Publication

Acoustic sensors play an important part in military, scientific, and industrial applications. Current audible sound sensing performance is mainly limited by the minimum detectable pressure of the sensor material and the energy transmission efficiency of the metamaterial component. Conventional approaches to improving the signal-to-noise ratio (SNR) mainly focus on complex sensor design and modification of transducer material. For example, through tuning the back volume size of a microphone system, combining the sensing material and electrode configurations, and stacking the cellular polypropylene films, the SNR of the piezoelectric sensors gets improved around 9 dB, 10 dB and 14 dB, respectively. The next generation of acoustic sensors requires advances in sensing behaviors to realize high-efficiency signal detection and acoustic communication in a wide working bandwidth. A practical solution is to enhance the detection limit of an audible sensing device with additional amplification components and bring in impedance matching designs for high-refractive-index metamaterials containing complex internal structures. It should be noted that the method is compatible with previous studies of sensor designing which can be considered as a further improvement for acoustic sensing performance.

In this thesis, impedance-gradient metamaterials with structural coupled designs (SCDs) are developed and investigated to increase the overall energy efficiency and improve the audible sound sensing ability of a measurement device. First, designing strategies are proposed for impedance matching in metamaterials based on the analogy of matching transformer in transmission line theory. Compared to traditional impedance-matched designs with specific geometrical parameters, the more general strategy provides an opportunity to improve the matching performance through analyzing the impedance distribution and the theoretical transmission spectrum. Different matching designs present unique acoustic characteristics including bandwidth, reflection coefficient, and the pattern of the reflection spectrum, which are waited to be applied for metamaterials.

The design, experimental demonstration, and numerical simulation are described for the characterizations of transmission efficiency and wavefront modulation realized by impedance-matched metamaterials and metasurfaces. For two-dimensional space-coiling metamaterial and three-dimensional helical metamaterial, modified structures with SCDs present an energy transmittance up to at least 60% in the frequency range of 1-7 kHz and 2-6 kHz, which is still much wider compared with recent studies. Because of enhanced energy efficiency, acoustic sensing performances achieved via metamaterial components with structural coupled designs are also improved over a wide bandwidth, compared with classic acoustic waveguides. Their maximum SNR enhancements are 12.13 dB and 11.55 dB based on experimental measurements, proving a more effective way to tune the sensing ability compared to conventional methods on sensors. From characterizations of wavefront modulation with positive or negative refraction, more than 6 dB SNR improvement is obtained owing to different impedance matching phenomena for meta-units.

Finally, based on impedance-matched designs, the quarter-wavelength acoustic resonator and the anisotropic sonic crystals are presented for broadband sound pressure amplification. The two metamaterial-enhanced sensing systems provide broadband improvements of SNR with incident signals below the detection limit of the measurement device, where the maximum value is 15.49 dB and 14.2 dB, respectively. Through the modification with SCD, the bandwidth of the amplification resonator is improved to 2468.1 Hz which is much larger than previous studies of modified resonators with acoustic coupling. Therefore, by selecting proper amplification metamaterial structure, the sensing performance of a measurement device gets largely improved which is superior to the conventional approaches with complex sensor designs and material modification. These results advance the use of impedance-matched metamaterials and related acoustic components for improved sensing behaviors and exhibit potentials for realizing multifunctional sensor networks.

Training classes
Enrollment Year
Year of Degree Awarded
References List

1. D. Glaser, R. D. Komistek, H. E. Cates and M. R. Mahfouz, J. Biomech. 43, 426-432 (2010).2. A. Wech, G. Tepp, J. Lyons and M. Haney, Geophys. Res. Lett. 45, 6918-6925 (2018).3. S. Irie, K. Inoue, K. Yoshida, J. Mamou, K. Kobayashi, H. Maruyama and T. Yamaguchi, J. Acoust. Soc. Am. 139, 512-519 (2016).4. K. Kim, C. G. Jeong and S. J. Hollister, Acta. Biomater. 4, 783-790 (2008).5. M. Quintana-Suárez, D. Sánchez-Rodríguez, I. Alonso-González and J. Alonso-Hernández, Appl. Sci. 7, 877 (2017).6. X. Cheng, H. Shu, Q. Liang and D. H. Du, IEEE T. Veh. Technol. 57, 1756-1766 (2008).7. F. J. L. Ribeiro, A. de Castro Pinto Pedroza and L. H. M. K. Costa, Telecommun. Syst. 58, 91-106 (2015).8. A. Hassani, A. Bertrand and M. Moonen, Signal Process. 107, 68-81 (2015).9. H. Ding, X. Shu, Y. Jin, T. Fan and H. Zhang, Nanoscale 11, 5839-5860 (2019).10. A. Rahaman, C. H. Park and B. Kim, Sensor Actuat. A Phys. 311, 112087 (2020).11. S. Kang, H. Hong, C. Rhee, Y. Yoon and C. Kim, J. Microelectromech. Syst. 30, 471-479 (2021).12. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso and Z. Gaburro, Science 334, 333-337 (2011).13. X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li and M. Gu, Nat. Commun. 6, 8433 (2015).14. R. Dunne, D. Desai and R. Sadiku, Acoust. Aust. 45, 453-469 (2017).15. V. G. Veselago, Sov. Phys. Usp. 10, 504-509 (1968).16. J. B. Pendry, J. Phys. Condens. Matter. 28, 481002 (2016).17. J. B. Pendry, A. J. Holden, W. J. Stewart and I. I. Youngs, Phys. Rev. Lett. 76, 4773-4776 (1996).18. J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, IEEE T. Microw. Theory 47, 2075-2084 (1999).19. D. Schurig, J. J. Mock and D. R. Smith, Appl. Phys. Lett. 88, 41109 (2006).20. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, Phys. Rev. Lett. 84, 4184-4187 (2000).21. K. Song, K. Kim, S. Hur, J. Kwak, J. Park, J. R. Yoon and J. Kim, Sci. Rep. 4, 1-6 (2015).22. L. Nicolas, M. Furstoss and M. A. Galland, Eur. Phys. J. Appl. Phys. 4, 95-100(1998).23. Z. Y. Liu, C. T. Chan and P. Sheng, Phys. Rev. B Condens. Matter Mater. Phys. 71, 14101-14103 (2005).24. J. Li and C. T. Chan, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 55602 (2004).25. S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang and C. K. Kim, Phys. Rev. Lett. 104, 54301 (2010).26. K. Song, S. H. Lee, K. Kim, S. Hur and J. Kim, Sci. Rep. 4, 4165 (2014).27. Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan and P. Sheng, Science 289, 1734-1736 (2000).28. N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun and X. Zhang, Nat. Mater. 5, 452-456 (2006).29. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012).30. Y. Li, B. Liang, Z. M. Gu, X. Y. Zou and J. C. Cheng, Sci. Rep. 3, 2546 (2013).31. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa and S. A. Cummer, Nat. Commun. 5, 5553 (2014).32. G. Ma, M. Yang, S. Xiao, Z. Yang and P. Sheng, Nat. Mater. 13, 873-878 (2014).33. D. P. Elford, L. Chalmers, F. V. Kusmartsev and G. M. Swallowe, J. Acoust. Soc. Am. 130, 2746-2755 (2011).34. M. Dubois, C. Shi, X. Zhu, Y. Wang and X. Zhang, Nat. Commun. 8, 14871 (2017).35. C. Shen, Y. Xie, J. Li, S. A. Cummer and Y. Jing, Appl. Phys. Lett. 108, 223502 (2016).36. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa and S. A. Cummer, Nat. Commun. 5, 5553 (2014).37. W. Yang, J. An, C. K. Chua and K. Zhou, Virtual Phys. Prototy. 15, 242-249 (2020).38. L. Yong, J. Xue, L. Bin, J. C. Cheng and L. Zhang, Phys. Rev. Appl. 4, 24003 (2015).39. Y. Zhu, X. Fan, B. Liang, J. Cheng and Y. Jing, Phys. Rev. X 7, 21034 (2017).40. M. Molerón, M. Serra-Garcia and C. Daraio, Appl. Phys. Lett. 105, 114109 (2014).41. X. Jiang, Y. Li, B. Liang, J. C. Cheng and L. Zhang, Phys. Rev. Lett. 117, 34301 (2016).42. G. Ma and P. Sheng, Sci. Adv. 2, 1501595 (2016).43. E. C. Robert, Foundations for Microwave Engineering, 2nd Edition (Wiley-IEEE, New York, 2001).44. F. Bongard, H. Lissek and J. R. Mosig, Phys. Rev. B Condens. Matter Mater. Phys. 82, 94306 (2010).45. J. Huang, T. Feichtner, P. Biagioni and B. Hecht, Nano Lett. 9, 1897-1902 (2009).46. M. P. David, Microwave Engineering, 4th Edition (John Wiley & Sons, New York, 2011).16947. D. I. L. De Villiers, P. W. Van Der Walt and P. Meyer, IEEE Trans. Microwave Theory Techn. 56, 1478-1484 (2008).48. Y. Xie, A. Konneker, B. Popa and S. A. Cummer, Appl. Phys. Lett. 103, 201906 (2013).49. K. Lange, Sensors 19, 5382 (2019).50. Y. Chen, H. Liu, M. Reilly, H. Bae and M. Yu, Nat. Commun. 5, 1-9 (2014).51. S. Horowitz, T. Nishida, L. Cattafesta and M. Sheplak, J. Acoust. Soc. Am. 122, 3428-3436 (2007).52. N. Mohamad, P. Iovenitti and T. Vinay, Engineering 02, 762-770 (2010).53. Y. Seo, D. Corona and N. A. Hall, Sens. Actuators A Phys. 264, 341-346 (2017).54. A. Rahaman and B. Kim, 2019 IEEE Seneors Conference 1-4 (IEEE, 2019).55. J. Hillenbrand and G. M. Sessler, J. Acoust. Soc. Am. 116, 3267-3270 (2004).56. J. Lan, Y. Li and X. Liu, Appl. Phys. Lett. 111, 263501 (2017).57. Y. Li, B. Liang, X. Tao, X. Zhu, X. Zou and J. Cheng, Appl. Phys. Lett. 101, 233508 (2012).58. Y. Li, B. Liang, X. Zou and J. Cheng, Appl. Phys. Lett. 103, 63509 (2013).59. R. Fleury and A. Alu, Phys. Rev. Lett. 111, 55501 (2013).60. H. Sun, J. Chen, Y. Ge, S. Yuan and X. Liu, J. Phys. D Appl. Phys. 51, 245102 (2018).61. Y. Wang, K. Deng, S. Xu, C. Qiu, H. Yang and Z. Liu, Phys. Lett. A 375, 1348-1351 (2011).62. C. Liu, J. Luo and Y. Lai, Phys. Rev. Mater. 2, 45201 (2018).63. R. Al Jahdali and Y. Wu, Appl. Phys. Lett. 108, 31902 (2016).64. Y. Ding, E. C. Statharas, K. Yao and M. Hong, Appl. Phys. Lett. 110, 241903 (2017).65. X. Jia, Y. Li, Y. Zhou, M. Yan and M. Hong, Appl. Phys. Express 11, 117301 (2018).66. J. Li, C. Shen, A. Diaz-Rubio, S. A. Tretyakov and S. A. Cummer, Nat. Commun. 9, 1342 (2018).67. C. Liu, C. Ma, X. Li, J. Luo, N. X. Fang and Y. Lai, Phys. Rev. Appl. 5, 54012 (2020).68. D. T. Blackstock, Fundamentals of Physical Acoustics (John Wiley & Sons, New York, 2000).69. L. E. Kinsler, R. F. Austin, B. C. Alan and V. S. James, Fundamentals of Acoustics, 4th Edition (John Wiley & Sons, New York, 1999).70. M. R. Schroeder, J. Acoust. Soc. Am. 57, 149-150 (1975).71. V. Fokin, M. Ambati, C. Sun and X. Zhang, Phys. Rev. B Condens. Matter Mater. Phys. 76, 144302 (2007).72. A. Castanie, J. F. Mercier, S. Felix and A. Maurel, Opt. Express 22, 29937-29953 (2014).73. X. Jia, Y. Li, Y. Zhou, M. Hong and M. Yan, Sci. China Phys. Mech. Astron. 62, 1-8 (2019).74. X. Zhu, K. Li, P. Zhang, J. Zhu, J. Zhang, C. Tian and S. Liu, Nat. Commun. 7, 11731 (2016).75. B. Assouar, B. Liang, Y. Wu, Y. Li, J. C. Cheng and J. Y, Nat. Rev. Mater. 3, 460-472 (2018).76. Z. Liang, T. Feng, S. Lok, F. Liu, K. B. Ng, C. H. Chan and J. Wang, et al., Sci. Rep. 3, 1614 (2013).77. Y. Xie, B. I. Popa, L. Zigoneanu and S. A. Cummer, Phys. Rev. Lett. 110, 175501 (2013).78. B. Liu, B. Ren, J. Zhao, X. Xu, Y. Feng, W. Zhao and Y. Jiang, Appl. Phys. Lett. 22, 221602 (2017).79. S. D. Zhao and Y. S. Wang, C. R. Phys. 5, 533-542 (2016).80. H. He, C. Qiu, L. Ye, X. Cai, X. Fan, M. Ke and F. Zhang, et al., Nature 560, 61-64 (2018).81. N. Iménez, W. Huang, V. Romero-García, V. Pagneux and J. P. Groby, Appl. Phys. Lett. 12, 12190282. L. Zigoneanu, B. I. Popa and S. A. Cummer, Nat. Mater. 13, 352-355 (2014).83. S. B. Gebrekidan, Y. I. Hwang, H. J. Kim and S. J. Song, Appl. Phys. Lett. 15, 151901 (2019).84. A. Yang, P. Li, Y. Wen, C. Lu, X. Peng, J. Zhang and W. He, Appl. Phys. Exp. 12, 127101 (2013).85. M. Jin, B. Liang, J. Yang, J. Yang and J. C. Cheng, Sci. Rep. 9, 11152 (2019).86. C. S. Park, Y. C. Shin, S. H. Jo, H. Yoon, W. Choi, B. D. Youn and M. Kim, Nano Energy 327-337 (2019).87. W. J. Padilla, D. N. Basov and D. R. Smith, Mater. Today 9, 28-35 (2006).88. G. Ma and P. Sheng, Sci. Adv. 2, e1501595 (2016).89. Y. Yang, Q. Li and G. P. Wang, Opt. Express 16, 11275-11280 (2008).90. N. Kaina, F. Lemoult, M. Fink and G. Lerosey, Nature 525, 77-81 (2015).91. H. F. Ma and T. J. Cui, Nat. Commun. 1, 21 (2010).92. Z. Jia, J. Li, C. Shen, Y. Xie and S. A. Cummer, J. Appl. Phys. 123, 25101 (2018).93. W. T. Lu and S. Sridhar, Phys. Rev. B Condens. Matter Mater. Phys. 77, 233101 (2008).94. R. Moussa, S. Foteinopoulou, L. Zhang, G. Tuttle, K. Guven, E. Ozbay and C. M. Soukoulis, Phys. Rev. B Condens. Matter Mater. Phys. 71, 85101-85106 (2005).95. A. Climente, D. Torrent and J. Sánchez-Dehesa, Appl. Phys. Lett. 100, 144103 (2012).96. N. Papadakis and G. Stavroulakis, Appl. Sci. 8, 1703 (2018).97. X. Jia, M. Hong and M. Yan, J. Appl. Phys. 127, 194901 (2020).98. J. Yang, J. Chen, Y. Liu, W. Yang, Y. Su and Z. L. Wang, ACS Nano 8, 2649-2657 (2014).99. M. Erol-Kantarci, H. T. Mouftah and S. Oktug, IEEE Commun. Mag. 48, 152-158 (2010).100. M. F. Fallon, J. Folkesson, H. McClelland and J. J. Leonard, IEEE J. Oceanic Eng. 38, 500-513 (2013).101. P. Kruizinga, P. Van Der Meulen, A. Fedjajevs, F. Mastik, G. Springeling, N. De Jong and J. G. Bosch, et al., Sci. Adv. 3, 1701423 (2017).102. D. Chen, Q. Liu and Z. He, Opt. Express 26, 16138-16146 (2018).103. X. Ni, Y. Wu, Z. G. Chen, L. Y. Zheng, Y. L. Xu, P. Nayar and X. P. Liu, et al., Sci. Rep. 1, 7038 (2014).104. T. Chen, J. Jiao and D. Yu, Measurement 108817 (2021).105. X. Peng, Y. Wen, P. Li, A. Yang and X. Bai, Appl. Phys. Lett. 103, 164106 (2013).106. Y. Lei, J. H. Wu, Z. Huang and S. Yang, J. Phys. D Appl. Phys. 6, 65301 (2021).107. A. Yang, P. Li, Y. Wen, C. Lu, X. Peng, W. He and J. Zhang, et al., Rev. Sci. Instrum. 85, 66103 (2014).108. G. S. Liu, Y. Y. Peng, M. H. Liu, X. Y. Zou and J. C. Cheng, Appl. Phys. Lett. 15, 153503 (2018).109. A. Alberti, P. M. Gomez, I. Spiousas and M. C. Eguia, Appl. Acoust. 1-5 (2016).110. A. Shakouri, F. Xu and Z. Fan, Appl. Phys. Lett. 5, 54103111. M. Yuan, Z. Cao, J. Luo and X. Chou, Micromachines 10, 48 (2019).112. L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu and J. Zhang, IEEE Sens. J. 16, 3054-3058 (2016).113. X. Jia, M. Yan and M. Hong, Mater. Design 197, 109254 (2021).114. J. Li, L. Fok, X. Yin, G. Bartal and X. Zhang, Nat. Mater. 8, 931-934 (2009).115. P. W. Jones and N. J. Kessissoglou, Acoust. Aust. 38, 13-19 (2010).116. R. Ghaffarivardavagh, J. Nikolajczyk, R. Glynn Holt, S. Anderson and X. Zhang, Nat. Commun. 9, 1-8 (2018).117. S. Wang and Y. Xie, IEEE Transactions on Antennas and Propagation 65, 6960-6967 (2017).118. M. A. Grossberg, P. IEEE 56, 1629-1630 (1968).119. A. Safari and E. K. Akdoğan, Piezoelectric and acoustic materials for transducer applications (Springer Science & Business Media, New York, 2008).

Data Source
Document TypeThesis
DepartmentDepartment of Materials Science and Engineering
Recommended Citation
GB/T 7714
Jia X. Audible Sound Sensing Enhancement via Structural Coupled Designs of Broadband Metamaterial[D]. 新加坡. 新加坡国立大学,2022.
Files in This Item:
File Name/Size DocType Version Access License
11755004-贾潇-材料科学与工程系(17259KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[贾潇]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[贾潇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[贾潇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.