中文版 | English


Alternative Title
Name pinyin
Meng Ying
School number
0830 环境科学与工程
Subject category of dissertation
08 工学
Mentor unit
Publication Years
Submission date
Place of Publication





(3)苏门答腊岛基准期(1971~2010)及不同升温情景下抽水蓄能蓄水成本变化范围为0.10~1.00 $/ m3;抽水蓄能的非梯级开发储能成本变化范围为186~5000 $/MWh,梯级开发储能成本变化范围为91~2200 $/MWh。梯级开发储能成本约为非梯级开发储能成本的50%,但不同升温情景下苏门答腊岛季节性抽水蓄能的蓄水和储能成本相差不大。

(4)常规水电开发下二氧化碳减排量(最大值68.34Í106 t)有助于实现印度尼西亚国家自主贡献碳排放目标的15%,而抽水蓄能开发产生的二氧化碳减排量最大值为30.17Í106 t,占国家自主贡献碳排放目标的6.66%。因此,在常规水电开发的同时,联合抽水蓄能与光伏、风电等间歇式可再生能源进行开发,可使印度尼西亚实现国家自主贡献目标的20%以上。


Other Abstract

Climate change is a major issue concerning the fate of humanity. Climate change will have profound impacts on regional and global hydrological cycle, which will, in turn, affect the availability and stability of hydropower generation. As a traditional and clean energy source, hydropower is indispensable to global energy supply system. Hydropower accounts for 16.6% of the world's electricity supply and 70% of all renewable electricity. Hydropower not only meets the increasing demand for electricity but also helps to reduce greenhouse gas emissions by replacing fossil fuels, contributing to global efforts to mitigate the effects of climate change. Determining the different effects of 1.5°C and 2°C global warming has become a hot topic in energy and water resources research. However, there are still limited studies on the effects of different global warming levels on hydropower potential. Indonesia has a pivotal role in the “Belt and Road” initiative, with a large population and huge energy consumption. Indonesia’s energy structure is currently dominated by fossil fuels. If Indonesia continues to rely heavily on fossil fuels to meet its energy demand, it will be difficult for the country to achieve its Nationally Determined Contributions (NDCs) and “net zero” targets.

This study chose Sumatra, the largest island independently owned by Indonesia, as the study area. Based on the techno-economic engineering model BeWhere and the reservoir optimization model SPHS considering the feasibility of economic, this study modeled and visualized optimal locations for conventional hydropower and pumped hydropower storage in Sumatra and analyzed the different carbon dioxide mitigation benefits of conventional hydropower and pumped hydropower storage under global warming levels of 1.5°C and 2°C. The study also assessed the contribution of hydropower development to NDCs and net zero emissions. The major results are as follows:

(1) Both global warming scenarios of 1.5°C and 2°C will have a positive impact on the conventional hydropower and pumped hydropower storage of the tropical island of Sumatra compared with the baseline period (1971-2010). Under the RCP6.0 scenario, the hydropower output is higher under the 1.5°C warming scenario than that under the 2°C warming scenario. The ratio of conventional hydropower production to electricity demand under the 1.5°C global warming scenario is 40% higher than that under the 2°C global warming scenario, while the pumped hydropower storage under the 1.5°C global warming scenario is about 5% higher than that under the 2°C global warming scenario.

(2) When considering the impact of protected areas, the conventional hydropower production in Sumatra Island decreases sharply and is far below the local energy demand, with a reduction in hydropower output about 40% to 80%. Therefore, policymakers in the Indonesian government should balance the relationship between hydropower production and environment protection when making policy decisions.

(3) The range of pumped-storage water cost variation is 0.10-1.00 $/m3 in Sumatra Island during the baseline period (1971-2010) and under different warming scenarios. The energy storage cost for non-cascade development ranges from 186-5000 $/MWh, while the energy storage cost for cascade development ranges from 91-2200 $/MWh. The cascade development energy storage cost is about 50% of the non-cascade development energy storage cost, but the difference is not significant between pumped-storage water and energy storage for seasonal purposes in Sumatra Island under different warming scenarios.

(4) The reduction in carbon dioxide emissions under conventional hydropower (maximum 68.34Í106 t) contributes to achieving 15% of Indonesia's Nationally Determined Contributions (NDCs). In contrast, the maximum reduction in carbon dioxide emissions of pumped-storage hydropower is 30.17Í106 t, which accounts for 6.66% of the NDCs. Therefore, development of conventional hydropower with intermittent renewable energy sources such as solar and wind power, along with pumped-storage hydropower, can enable Indonesia to achieve more than 20% of its NDCs target.

This study has constructed a systematic and comprehensive water-energy evaluation system that combines hydrological simulation results with technical and economic models. It has identified optimal locations for hydropower construction under different warming scenarios, analyzed the spatiotemporal distribution of hydropower development potential and carried out technical and economic evaluation of hydropower optimization under different warming scenarios. in addressing energy security issues caused by climate change, ensuring regional energy security, promoting energy green and low-carbon transformation, and providing theoretical and practical support for establishing a green and low-carbon-oriented energy development and utilization mechanism and achieving net-zero emissions. Furthermore, this study has certain theoretical and practical significance for ensuring the green development of the Belt and Road Initiative and achieving the Sustainable Development Goals.

Other Keyword
Training classes
Enrollment Year
Year of Degree Awarded
References List

[1] TOLLEFSON J. Climate change is hitting the planet faster than scientistsoriginally thought[J]. Nature, 2022.
[2] CARNICER J, ALEGRIA A, GIANNAKOPOULOS C, et al. Global warmingis shifting the relationships between fire weather and realized fire-inducedCO2 emissions in Europe[J]. Scientific Reports, 2022, 12(1): 10365.
[3] FIGUEIREDO J, THOMAS C J, DELEERSNIJDER E, et al. Global warmingdecreases connectivity among coral populations[J]. Nature Climate Change,2022, 12(1): 83-87.
[4] BARBAROSSA V, BOSMANS J, WANDERS N, et al. Threats of globalwarming to the world’s freshwater fishes[J]. Nature Communications, 2021,12(1): 1701.
[5] Paris Agreement. United Nations Framework Convention on Climate Change(UNFCCC)[J]. Climate Change Secretariat: Bonn, Germany, 2015.
[6] SCHLEUSSNER C-F, LISSNER T K, FISCHER E M, et al. Differentialclimate impacts for policy-relevant limits to global warming: the case of1.5°C and 2°C[J]. Earth System Dynamics, Copernicus GmbH, 2016, 7(2):327–351.
[7] RUSSO S, SILLMANN J, STERL A. Humid heat waves at different warminglevels[J]. Scientific Reports, 2017, 7(1): 7477.
[8] Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C [R].World Meteorological Organization, 2018.
[9] MENG Y, LIU J G, WANG Z F, et al. Undermined co-benefits of hydropowerand irrigation under climate change[J]. Resources, Conservation andRecycling, 2021, 167: 105375.
[10] LI Y, TAO H, SU B D, et al. Impacts of 1.5 °C and 2 °C global warming onwinter snow depth in Central Asia[J]. Science of The Total Environment,2019, 651: 2866-2873.
[11] ROGELJ J, LUDERER G, PIETZCKER R C, et al. Energy systemtransformations for limiting end-of-century warming to below 1.5 °C[J].Nature Climate Change, 2015, 5(6): 519-527.
[12] PARK C-E, JEONG S-J, JOSHI M, et al. Keeping global warming within1.5 °C constrains emergence of aridification[J]. Nature Climate Change,2018, 8(1): 70-74.
[13] ZHANG Z E, PAN S-Y, LI H, et al. Recent advances in carbon dioxideutilization[J]. Renewable and Sustainable Energy Reviews, 2020, 125:109799.
[14] BELBUTE J M, PEREIRA A M. Reference forecasts for CO2 emissions fromfossil-fuel combustion and cement production in Portugal[J]. Energy Policy,2020, 144: 111642.
[15] LE QUÉRÉ C, JACKSON R B, JONES M W, et al. Temporary reduction indaily global CO2 emissions during the COVID-19 forced confinement[J].Nature Climate Change, 2020, 10(7): 647-653.
[16] VARGAS C A, CUEVAS L A, BROITMAN B R, et al. Upper environmentalpCO2 drives sensitivity to ocean acidification in marine invertebrates[J].Nature Climate Change, 2022, 12(2): 200-207.
[17] SINGH A, ABBHISHEK K, KUTTIPPURATH J, et al. Decadal variations inCO2 during agricultural seasons in India and role of management assustainable approach[J]. Environmental Technology & Innovation, 2022, 27:102498.
[18] 于贵瑞, 郝天象, 朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(04): 423-434.
[19] IYER G, LEDNA C, CLARKE L, et al. Measuring progress from nationallydetermined contributions to mid-century strategies[J]. Nature ClimateChange, 2017, 7(12): 871-874.
[20] WOLF S, TEITGE J, MIELKE J, et al. The European Green Deal—MoreThan Climate Neutrality[J]. Intereconomics, 2021, 56(2): 99-107.
[21] KOUGIAS I, TAYLOR N, KAKOULAKI G, et al. The role of photovoltaicsfor the European Green Deal and the recovery plan[J]. Renewable andSustainable Energy Reviews, 2021, 144: 111017.
[22] ROGELJ J, GEDEN O, COWIE A, et al. Net-zero emissions targets are vague:three ways to fix[J]. Nature, 2021, 591(7850): 365-368.
[23] WELSBY D, PRICE J, PYE S, et al. Unextractable fossil fuels in a 1.5 °Cworld[J]. Nature, 2021, 597(7875): 230-234.
[24] MIKULČIĆ H, RIDJAN SKOV I, DOMINKOVIĆ D F, et al. Flexible CarbonCapture and Utilization technologies in future energy systems and theutilization pathways of captured CO2[J]. Renewable and SustainableEnergy Reviews, 2019, 114: 109338.
[25] DAVIS S J, LEWIS N S, SHANER M, et al. Net-zero emissions energysystems[J]. Science, American Association for the Advancement of Science,2018, 360(6396): 9793.
[26] OWUSU P A, ASUMADU-SARKODIE S. A review of renewable energysources, sustainability issues and climate change mitigation[J]. Dubey S.Cogent Engineering, Cogent OA, 2016, 3(1): 1167990.
[27] MENG Y, LIU J G, LEDUC S, et al. Hydropower Production Benefits MoreFrom 1.5 °C than 2 °C Climate Scenario[J]. Water Resources Research,2020, 56(5): e2019WR025519.
[28] MORAN E F, LOPEZ M C, MOORE N, et al. Sustainable hydropower in the21st century[J]. Proceedings of the National Academy of Sciences,Proceedings of the National Academy of Sciences, 2018, 115(47): 11891-11898.
[29] ZARFL C, BERLEKAMP J, HE F, et al. Future large hydropower damsimpact global freshwater megafauna[J]. Scientific Reports, 2019, 9(1):18531.
[30] World Energy Council. World Energy Resources 2016[J]. World EnergyResources 2016, 2016: 1-33.
[31] YÜKSEL I. Hydropower for sustainable water and energy development[J] .Renewable and Sustainable Energy Reviews, 2010, 14(1): 462-469.
[32] HUNT J D, BYERS E, WADA Y, et al. Global resource potential of seasonalpumped hydropower storage for energy and water storage[J]. NatureCommunications, 2020, 11(1): 947.
[33] REHMAN S, AL-HADHRAMI L M, ALAM MD M. Pumped hydro energystorage system: A technological review[J]. Renewable and SustainableEnergy Reviews, 2015, 44: 586-598.
[34] ADI A, LASNAWATIN F, PRANANTO A, et al. Handbook of Energy andEconomic Statistics of Indonesia 2018[J]. Ministry of Energy and MineralResources Republic of Indonesia, 2019.
[35] HAKAM D F, ARIF L, FAHRUDIN T. Sustainable energy production inSumatra power system[C]//2012 International Conference on PowerEngineering and Renewable Energy (ICPERE), 2012: 1-4.
[36] SILALAHI D F, BLAKERS A, STOCKS M, et al. Indonesia’s Vast SolarEnergy Potential[J]. Energies, 2021, 14(17): 5424.
[37] TURNBAUGH P J, LEY R E, HAMADY M, et al. The Human MicrobiomeProject[J]. Nature, 2007, 449(7164): 804-810.
[38] LI G D, FANG C L, LI Y J, et al. Global impacts of future urban expansionon terrestrial vertebrate diversity[J]. Nature Communications, 2022, 13(1):1628.
[39] PEÑUELAS J, SARDANS J. The global nitrogen-phosphorus imbalance[J].Science, American Association for the Advancement of Science, 2022,375(6578): 266-267.
[40] NEWBOLD T, HUDSON L N, HILL S L L, et al. Global effects of land useon local terrestrial biodiversity[J]. Nature, 2015, 520(7545): 45-50.
[41] SONG X-P, HANSEN M C, STEHMAN S V, et al. Global land change from1982 to 2016[J]. Nature, 2018, 560(7720): 639-643.
[42] IEA. Global Energy Review 2021[R]. Paris: 2021.
[43] IHA. Hydropower status report[R]. London, UK: 2019.
[44] IHA. Hydropower status report[R]. London, UK: 2020.
[45] IEA. Global Energy Review 2020[R]. Paris: 2020.
[46] JURASZ J, MIKULIK J, KRZYWDA M, et al. Integrating a wind- and solarpowered hybrid to the power system by coupling it with a hydroelectricpower station with pumping installation[J]. Energy, 2018, 144: 549-563.
[47] WANG X, VIRGUEZ E, KERN J, et al. Integrating wind, photovoltaic, andlarge hydropower during the reservoir refilling period[J]. EnergyConversion and Management, 2019, 198: 111778.
[48] 张良静, 侯学良. 基于熵-TOPSIS 法的水电站坝址选择模型研究[D]. 华北电力大学(北京), 2020.
[49] ZHOU Y, HEJAZI M, SMITH S, et al. A comprehensive view of globalpotential for hydro-generated electricity[J]. Energy & EnvironmentalScience, The Royal Society of Chemistry, 2015, 8(9): 2622-2633.
[50] TEFERA W M, KASIVISWANATHAN K S. A global-scale hydropowerpotential assessment and feasibility evaluations[J]. Water Resources andEconomics, 2022, 38: 100198.
[51] EDENHOFER O, PICHS-MADRUGA R, SOKONA Y, et al. Renewableenergy sources and climate change mitigation: Special report of theintergovernmental panel on climate change[M]. Cambridge University Press,2011.
[52] EDMONDS J, CLARKE J, DOOLEY J, et al. Stabilization of CO2 in a B2world: insights on the roles of carbon capture and disposal, hydrogen, andtransportation technologies[J]. Energy Economics, 2004, 26(4): 517-537.
[53] ZHOU Y, CLARKE L, EOM J, et al. Modeling the effect of climate changeon U.S. state-level buildings energy demands in an integrated assessmentframework[J]. Applied Energy, 2014, 113: 1077-1088.
[54] KUSRE B C, BARUAH D C, BORDOLOI P K, et al. Assessment ofhydropower potential using GIS and hydrological modeling technique inKopili River basin in Assam (India)[J]. Applied Energy, 2010, 87(1): 298-309.
[55] LIU W, LUND H, MATHIESEN B V, et al. Potential of renewable energysystems in China[J]. Applied Energy, 2011, 88(2): 518-525.
[56] KOÇ C. A study on the development of hydropower potential in Turkey[J].Renewable and Sustainable Energy Reviews, 2014, 39: 498-508.
[57] GERNAAT D E, BOGAART P W, VUUREN D P VAN, et al. High-resolutionassessment of global technical and economic hydropower potential[J].Nature Energy, 2017, 2(10): 821-828.
[58] PALOMINO CUYA D G, BRANDIMARTE L, POPESCU I, et al. A GISbased assessment of maximum potential hydropower production in La Platabasin under global changes[J]. Renewable Energy, 2013, 50: 103-114.
[59] XU R R, ZENG Z Z, PAN M, et al. A global-scale framework for hydropowerdevelopment incorporating strict environmental constraints[J]. NatureWater, 2023, 1(1): 113-122.
[60] LEHNER B, CZISCH G, VASSOLO S. The impact of global change on thehydropower potential of Europe: a model-based analysis[J]. Energy Policy,2005, 33(7): 839-855.
[61] HAYASHI T, YOSHINO F, WAKA R. Optimal sequencing site of hydropower stations[J]. Journal of Energy Resources Technology, 1995,.117(2):125-132.
[62] ROMANELLI J P, SILVA L G, HORTA A, et al. Site selection for hydropowerdevelopment: a GIS-based framework to improve planning in Brazil[J].Journal of Environmental Engineering, 2018, 144(7): 04018051.
[63] MANIS L. GIS-based mapping potential sites for micro-hydro power plantsin West Sumatera[C]//IEEE International Conference on InnovativeResearch and Development (ICIRD). IEEE, 2018: 1-4.
[64] REN F. Site Selection Optimization for Thermal Power Plant Based on RoughSet and Multi-Objective Programming[C]//Advanced Materials Research.Trans Tech Publications, 2014, 960: 1501-1507.
[65] YASSER M, JAHANGIR K, MOHMMAD A. Earth dam site selection usingthe analytic hierarchy process (AHP): a case study in the west of Iran[J].Arabian Journal of Geosciences, 2013, 6(9): 3417-3426.
[66] TORABI-KAVEH M, BABAZADEH R, MOHAMMADI S, et al. Landfill siteselection using combination of GIS and fuzzy AHP, a case study: Iranshahr,Iran[J]. Waste Management & Research, SAGE Publications Sage UK:London, England, 2016, 34(5): 438-448.
[67] PARK J-B, LEE K-S, SHIN J-R, ET AL. Economic load dispatch fornonsmooth cost functions using particle swarm optimization [C]//2003IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491). IEEE, 2003, 2: 938-943.
[68] NAMANY S, AL-ANSARI T, GOVINDAN R. Sustainable energy, water andfood nexus systems: A focused review of decision-making tools for efficientresource management and governance[J]. Journal of Cleaner Production,2019, 225: 610-626.
[69] RINGKJØB H-K, HAUGAN P M, SOLBREKKE I M. A review of modellingtools for energy and electricity systems with large shares of variablerenewables[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 440-459.
[70] SAVVIDIS G, SIALA K, WEISSBART C, et al. The gap between energypolicy challenges and model capabilities[J]. Energy Policy, 2019, 125: 503-520.
[71] DAGOUMAS A S, KOLTSAKLIS N E. Review of models for integratingrenewable energy in the generation expansion planning[J]. Applied E nergy,2019, 242: 1573-1587.
[72] LEE H-K, LEE I-B, REKLAITIS G V. Capacity expansion problem ofmultisite batch plants with production and distribution[J]. Computers &Chemical Engineering, 2000, 24(2): 1597-1602.
[73] LUSS H. A capacity-expansion model for two facility types[J]. NavalResearch Logistics Quarterly, 1979, 26(2): 291-303.
[74] COHEN S M, BECKER J, BIELEN D A, et al. Regional Energy DeploymentSystem (ReEDS) Model Documentation: Version 2018[J]. 2019.
[75] HOWELLS M, ROGNER H, STRACHAN N, et al. OSeMOSYS: The OpenSource Energy Modeling System: An introduction to its ethos, structure anddevelopment[J]. Energy Policy, 2011, 39(10): 5850-5870.
[76] AHMAD S, MAT TAHAR R, MUHAMMAD-SUKKI F, et al. Application ofsystem dynamics approach in electricity sector modelling: A review[J].Renewable and Sustainable Energy Reviews, 2016, 56: 29-37.
[77] TEMRAZ H K, SALAMA M M A. A planning model for siting, sizing andtiming of distribution substations and defining the associated service area[J].Electric Power Systems Research, 2002, 62(2): 145-151.
[78] ARNELL N W, GOSLING S N. The impacts of climate change on river flowregimes at the global scale[J]. Journal of Hydrology, 2013, 486: 351-364.
[79] ZENG R, CAI X, RINGLER C, et al. Hydropower versus irrigation—ananalysis of global patterns[J]. Environmental Research Letters, 2017, 12(3):034006.
[80] BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of awarming climate on water availability in snow-dominated regions[J].Nature, 2005, 438(7066): 303-309.
[81] HAMUDUDU B, KILLINGTVEIT A. Assessing Climate Change Impacts onGlobal Hydropower[J]. Energies, Molecular Diversity PreservationInternational, 2012, 5(2): 305-322.
[82] REYER C P O, OTTO I M, ADAMS S, et al. Climate change impacts inCentral Asia and their implications for development[J]. RegionalEnvironmental Change, 2017, 17(6): 1639-1650.
[83] MINVILLE M, BRISSETTE F, KRAU S, et al. Adaptation to Climate Changein the Management of a Canadian Water-Resources System Exploited forHydropower[J]. Water Resources Management, 2009, 23(14): 2965-2986.
[84] JÚNIOR J L S, TOMASELLA J, RODRIGUEZ D A. Impacts of futureclimatic and land cover changes on the hydrological regime of the MadeiraRiver basin[J]. Climatic Change, 2015, 129(1): 117-129.
[85] VAN VLIET M T, WIBERG D, LEDUC S, et al. Power-generation systemvulnerability and adaptation to changes in climate and water resources[J].Nature Climate Change, 2016, 6(4): 375-380.
[86] TARIKU T B, GAN K E, TAN X, et al. Global warming impact to River Basinof Blue Nile and the optimum operation of its multi-reservoir system forhydropower production and irrigation[J]. Science of The Total Environment,2021, 767: 144863.
[87] FAN J-L, HU J-W, ZHANG X, et al. Impacts of climate change onhydropower generation in China[J]. Mathematics and Computers inSimulation, 2020, 167: 4-18.
[88] TOBIN I, GREUELL W, JEREZ S, et al. Vulnerabilities and resilience ofEuropean power generation to 1.5°C, 2°C and 3°C warming[J].Environmental Research Letters, 2018, 13(4): 044024.
[89] TATAR S M, AKULKER H, SILDIR H, et al. Optimal design and operationof integrated microgrids under intermittent renewable energy sourcescoupled with green hydrogen and demand scenarios[J]. InternationalJournal of Hydrogen Energy, 2022, 47(65): 27848-27865.
[90] KALDELLIS J, KAVADIAS K, FILIOS A. A new computational algorithmfor the calculation of maximum wind energy penetration in autonomouselectrical generation systems[J]. Applied Energy, 2009, 86(7-8): 1011-1023.
[91] KATSAPRAKAKIS D A, PAPADAKIS N, CHRISTAKIS D G, et al. On thewind power rejection in the islands of Crete and Rhodes[J]. Wind Energy,2007, 10(5): 415-434.
[92] YANG C-J, JACKSON R B. Opportunities and barriers to pumped-hydroenergy storage in the United States[J]. Renewable and Sustainable EnergyReviews, 2011, 15(1): 839-844.
[93] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题[J]. 南方能源建设, 2019, 6(3): 5.
[94] IHA. Hydropower Status Report [R].2022.
[95] 胡泽春, 丁华杰, 孔涛. 风电—抽水蓄能联合日运行优化调度模型[J]. 电力系统自动化, 2012, 36(02): 36-41.
[96] LUO X, WANG J, DOONER M, et al. Overview of current development inelectrical energy storage technologies and the application potential in powersystem operation[J]. Applied Energy, 2015, 137: 511-536.
[97] KEAR G, CHAPMAN R. ‘Reserving judgement’: Perceptions of pumpedhydro and utility-scale batteries for electricity storage and reservegeneration in New Zealand[J]. Renewable energy, 2013, 57: 249-261.
[98] 张晓利. 抽水蓄能电站渣场布置及防护研究[D].西北农林科技大学, 2014.
[99] PAPAEFTHIMIOU S, KARAMANOU E, PAPATHANASSIOU S, et al.Operating policies for wind-pumped storage hybrid power stations in islandgrids[J]. IET Renewable Power Generation, 2009, 3(3): 293-307.
[100] PAPAEFTHYMIOU S V, KARAMANOU E G, PAPATHANASSIOU S A, etal. A wind-hydro-pumped storage station leading to high RES penetrationin the autonomous island system of Ikaria[J]. IEEE Transactions onsustainable energy, 2010, 1(3): 163-172.
[101] PAPAEFTHYMIOU S V, PAPATHANASSIOU S A, KARAMANOU E G.Application of Pumped Storage to Increase Renewable Energy Penetrationin Autonomous Island Systems [G]//Muyeen S M.Wind Energy ConversionSystems: Technology and Trends. London: Springer, 2012: 295-335.
[102] DINGLIN L, YINGJIE C, KUN Z, et al. Economic evaluation of windpowered pumped storage system[J]. Systems Engineering Procedia, 2012, 4:107-115.
[103] REUTER W H, FUSS S, SZOLGAYOVÁ J, et al. Investment in wind powerand pumped storage in a real options model[J]. Renewable and SustainableEnergy Reviews, 2012, 16(4): 2242-2248.
[104] BAYÓN L, GRAU J M, RUIZ M M, et al. Mathematical modelling of thecombined optimization of a pumped-storage hydro-plant and a wind park[J].Mathematical and Computer Modelling, 2013, 57(7): 2024-2028.
[105] ARNAOUTAKIS G E, KEFALA G, DAKANALI E, et al. CombinedOperation of Wind-Pumped Hydro Storage Plant with a Concentrating SolarPower Plant for Insular Systems: A Case Study for the Island of Rhodes[J].Energies, 2022, 15(18): 6822.
[106] PSARROS G N, PAPATHANASSIOU S A. Internal dispatch for RESstorage hybrid power stations in isolated grids[J]. Renewable Energy, 2020,147: 2141-2150.
[107] BUENO C, CARTA J A. Wind powered pumped hydro storage systems, ameans of increasing the penetration of renewable energy in the CanaryIslands[J]. Renewable and Sustainable Energy Reviews, 2006, 10(4): 312-340.
[108] MCDOWALL J. Integrating energy storage with wind power in weakelectricity grids[J]. Journal of Power Sources, 2006, 162(2): 959-964.
[109] KALDELLIS J K, ZAFIRAKIS D, KAVADIAS K. Techno-economiccomparison of energy storage systems for island autonomous electricalnetworks[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 378-392.
[110] HAAS J, PRIETO-MIRANDA L, GHORBANI N, et al. Revisiting thepotential of pumped-hydro energy storage: A method to detect economicallyattractive sites[J]. Renewable Energy, 2022, 181: 182-193.
[111] ZHENG Y, SAHRAEI-ARDAKANI M. Leveraging existing water andwastewater infrastructure to develop distributed pumped storagehydropower in California[J]. Journal of Energy Storage, 2021, 34: 102204.
[112] CONNOLLY D, MACLAUGHLIN S, LEAHY M. Development of acomputer program to locate potential sites for pumped hydroelectric energystorage[J]. Energy, 2010, 35(1): 375-381.
[113] FITZGERALD N, LACAL ARÁNTEGUI R, MCKEOGH E, et al. A GISbased model to calculate the potential for transforming conventionalhydropower schemes and non-hydro reservoirs to pumped hydropowerschemes[J]. Energy, 2012, 41(1): 483-490.
[114] KUCUKALI S. Finding the most suitable existing hydropower reservoirsfor the development of pumped-storage schemes: An integrated approach[J].Renewable and Sustainable Energy Reviews, 2014, 37: 502-508.
[115] GIMENO-GUTIÉRREZ M, LACAL-ARÁNTEGUI R. Assessment of theEuropean potential for pumped hydropower energy storage based on twoexisting reservoirs[J]. Renewable Energy, 2015, 75: 856-868.
[116] JIMÉNEZ CAPILLA J A, CARRIÓN J A, ALAMEDA-HERNANDEZ E.Optimal site selection for upper reservoirs in pump-back systems, usinggeographical information systems and multicriteria analysis[J]. RenewableEnergy, 2016, 86: 429-440.
[117] LU X, WANG S. A GIS-based assessment of Tibet’s potential for pumpedhydropower energy storage[J]. Renewable and Sustainable Energy Reviews,2017, 69: 1045-1054.
[118] ROGEAU A, GIRARD R, KARINIOTAKIS G. A generic GIS-based methodfor small Pumped Hydro Energy Storage (PHES) potential evaluation atlarge scale[J]. Applied Energy, 2017, 197: 241-253.
[119] QIU L, HE L, LU H, et al. Pumped hydropower storage potential and itscontribution to hybrid renewable energy co-development: A case study inthe Qinghai-Tibet Plateau[J]. Journal of Energy Storage, 2022, 51: 104447.
[120] BRUNETTA G, CALDARICE O. Planning for Climate Change: AdaptationActions and Future Challenges in the Italian Cities [C]//Calabrò F, DellaSpina L, Bevilacqua C.New Metropolitan Perspectives. Cham: SpringerInternational Publishing, 2019: 609-613.
[121] FRAGA H. Climate Change: A New Challenge for the WinemakingSector[J]. Agronomy,2020, 10(10): 1465.
[122] LI Z Y, FANG H Y. Impacts of climate change on water erosion: A review[J].Earth-Science Reviews, 2016, 163: 94-117.
[123] 刘俊国, 孟莹, 张学静. IPCC AR6 报告解读:地下水[J]. 气候变化研究进展, 2022, 18(4): 414.
[124] VAN VLIET M T H, VAN BEEK L P H, EISNER S, et al. Multi-modelassessment of global hydropower and cooling water discharge potentialunder climate change[J]. Global Environmental Change, 2016, 40: 156-170.
[125] ZHANG X, LI H-Y, DENG Z D, et al. Impacts of climate change, policyand Water-Energy-Food nexus on hydropower development[J]. RenewableEnergy, 2018, 116: 827-834.
[126] ROUNCE D R, HOCK R, MAUSSION F, et al. Global glacier change in the21st century: Every increase in temperature matters[J]. Science, AmericanAssociation for the Advancement of Science, 2023, 379(6627): 78-83.
[127] TEDSTONE A J, MACHGUTH H. Increasing surface runoff fromGreenland’s firn areas[J]. Nature Climate Change, 2022, 12(7): 672-676.
[128] VUILLE M, CAREY M, HUGGEL C, et al. Rapid decline of snow and icein the tropical Andes-Impacts, uncertainties, and challenges ahead[J]. EarthScience Reviews, 2018, 176: 195-213.
[129] WINKLER M, JUEN I, MÖLG T, et al. Measured and modelled sublimationon the tropical Glaciar Artesonraju, Perú[J]. The Cryosphere, 2009, 3(1):21-30.
[130] MACDONALD M K, POMEROY J W, PIETRONIRO A. On the importanceof sublimation to an alpine snow mass balance in the Canadian RockyMountains[J]. Hydrology and Earth System Sciences, 2010, 14(7): 1401-1415.
[131] STIGTER E, LITT M, STEINER J F, et al. The Importance of SnowSublimation on a Himalayan Glacier[J]. Frontiers in Earth Science, 2018, 6.
[132] VIONNET V, MARTIN E, MASSON V, et al. Simulation of wind-inducedsnow transport and sublimation in alpine terrain using a fully coupledsnowpack/atmosphere model[J]. The Cryosphere, 2014, 8(2): 395-415.
[133] ZHANG Y, PEÑA-ARANCIBIA J L, MCVICAR T R, et al. Multi-decadaltrends in global terrestrial evapotranspiration and its components[J].Scientific Reports, 2016, 6(1): 19124.
[134] FLÖRKE M, SCHNEIDER C, MCDONALD R I. Water competitionbetween cities and agriculture driven by climate change and urban growth[J].Nature Sustainability, 2018, 1(1): 51-58.
[135] BIJL D L, BIEMANS H, BOGAART P W, et al. A Global Analysis of FutureWater Deficit Based on Different Allocation Mechanisms[J]. WaterResources Research, 2018, 54(8): 5803-5824.
[136] IEA. Hydropower[M]. OECD, 2012.
[137] GAUDARD L, ROMERIO F. Reprint of “The future of hydropower inEurope: Interconnecting climate, markets and policies”[J]. EnvironmentalScience & Policy, 2014, 43: 5-14.
[138] RAADAL H L, GAGNON L, MODAHL I S, et al. Life cycle greenhousegas (GHG) emissions from the generation of wind and hydro power[J].Renewable and Sustainable Energy Reviews, 2011, 15(7): 3417-3422.
[139] STERNBERG R. Hydropower’s future, the environment, and globalelectricity systems[J]. Renewable and Sustainable Energy Reviews, 2010,14(2): 713-723.
[140] BERGA L. The Role of Hydropower in Climate Change Mitigation andAdaptation: A Review[J]. Engineering, 2016, 2(3): 313-318.
[141] COUNCIL W E. Comparison of Energy Systems Using Life CycleAssessment: A Special Report of the World Energy Council[M]. WorldEnergy Council, 2004.
[142] 郑璀莹, 周虹, 付湘宁. 水电在适应与减缓气候变化影响中的作用[J]. 水利水电快报, 2014, 35(07): 4-6.
[143] BLAKERS A, STOCKS M, LU B, et al. A review of pumped hydro energystorage[J]. Progress in Energy, 2021, 3(2): 022003.
[144] HUNT J D, ZAKERI B, LOPES R, et al. Existing and new arrangements ofpumped-hydro storage plants[J]. Renewable and Sustainable EnergyReviews, 2020, 129: 109914.
[145] JAVED M S, MA T, JURASZ J, et al. Solar and wind power generationsystems with pumped hydro storage: Review and future perspectives[J].Renewable Energy, 2020, 148: 176-192.
[146] WANG F, LANG Y, LIU C-Q, et al. Flux of organic carbon burial and carbonemission from a large reservoir: implications for the cleanliness assessmentof hydropower[J]. Science Bulletin, 2019, 64(9): 603-611.
[147] LI Y, KASAHARA T, CHIWA M, et al. Effects of dams and reservoirs onorganic matter decomposition in forested mountain streams in westernJapan[J]. River Research and Applications, 2020, 36(7): 1257-1266.
[148] FONSECA A L DOS S, BIANCHINI JR I, PIMENTA C M M, et al. Theeffect of hydrostatic pressure on the decomposition of inundated terrestrialplant detritus of different quality in simulated reservoir formation[J]. Lakes& Reservoirs: Science, Policy and Management for Sustainable Use, 2016,21(3): 216-223.
[149] GUNKEL G. Hydropower - A Green Energy? Tropical Reservoirs andGreenhouse Gas Emissions[J]. CLEAN-Soil, Air, Water, 2009, 37(9): 726-734.
[150] UBIERNA M, SANTOS C D, MERCIER-BLAIS S. Water Security andClimate Change: Hydropower Reservoir Greenhouse Gas Emissions[G]//Biswas A K, Tortajada C.Water Security Under Climate Change.Singapore: Springer, 2022: 69-94.
[151] ABRIL G, BORGES A V. Ideas and perspectives: Carbon leaks from floodedland: do we need to replumb the inland water active pipe?[J].Biogeosciences, Copernicus GmbH, 2019, 16(3): 769-784.
[152] SHAKOOR A, ASHRAF F, SHAKOOR S, et al. Biogeochemicaltransformation of greenhouse gas emissions from terrestrial to atmosphericenvironment and potential feedback to climate forcing[J]. EnvironmentalScience and Pollution Research, 2020, 27(31): 38513-38536.
[153] YANG P, FONG D A, LO E Y-M, et al. Vertical mixing in a shallow tropicalreservoir[J]. Limnology, 2019, 20(3): 279-296.
[154] YU Z, WANG L. Factors influencing thermal structure in a tributary bay ofThree Gorges Reservoir[J]. Journal of Hydrodynamics, 2011, 23(4): 407-415.
[155] STUIVER M. Atmospheric Carbon Dioxide and Carbon ReservoirChanges[J]. Science, 1978, 199(4326): 253-258.
[156] MÄKINEN K, KHAN S. Policy Considerations for Greenhouse GasEmissions from Freshwater Reservoirs [J]. Water alternatives, 2010, 3(2).
[157] MATEAR R J, HIRST A C. Long-term changes in dissolved oxygenconcentrations in the ocean caused by protracted global warming[J]. GlobalBiogeochemical Cycles, 2003, 17(4):1-32.
[158] SAIAN P O N, PRATAMA R A, SUSETYO Y A. Sistem Informasi GeografisPotensi Sumber Daya Kelautan Berbasis Android[J]. Jurnal Transformatika,2021, 18(2): 187-198.
[159] 张兆吉, 雒国中, 王昭, 等. 华北平原地下水资源可持续利用研究[J]. 资源科学, 2009(3): 355-360.
[160] WINKEL L, BERG M, STENGEL C, et al. Hydrogeological surveyassessing arsenic and other groundwater contaminants in the lowlands ofSumatra, Indonesia[J]. Applied Geochemistry, 2008, 23(11): 3019-3028.
[161] SUPRIYADI S, HIDAYATI R, HIDAYAT R, et al. Mapping Extreme RainConditions in Sumatra by Influence Global Conditions[J]. IOP ConferenceSeries: Earth and Environmental Science, 2017, 58(1): 012041.
[162] SANI L, KHATIWADA D, HARAHAP F, et al. Decarbonization pathwaysfor the power sector in Sumatra, Indonesia[J]. Renewable and SustainableEnergy Reviews, 2021, 150: 111507.
[163] ARINALDO D, ADIATMA J C. Indonesia’s coal dynamics: toward a justenergy transition[R]. IESR report, 2019.
[164] ARINALDO D, ADIATMA J C, SIMAMORA P. Indonesia Clean EnergyOutlook Reviewing 2018, Outlooking 2019[R/OL]. Institute for EssentialService Reform.
[2022-10-10]. http://iesr. or. id/old/wp-content/uploads/Indonesia-Clean-Energy-Outlook-2019. pdf, 2018.
[165] LEGINO S, ARIANTO R, PASRA N. Indonesia Clean Energy Outlook:Tracking Progress and Review of Clean Energy Development inIndonesia[J]. Institute for Essential Services Reform (IESR), 2019.
[166] SIREGAR B D, SUDIARTO B, SETIABUDY R. Economic Analysis ofRenewable Energy Power Plant in Sumatra, Indonesia[C]//2019 IEEEInternational Conference on Innovative Research and Development(ICIRD).2019: 1-4.
[167] VELDHUIS A J, REINDERS A H M E. Reviewing the potential and costeffectiveness of grid-connected solar PV in Indonesia on a provinciallevel[J]. Renewable and Sustainable Energy Reviews, 2013, 27: 315-324.
[168] VIDINOPOULOS A, WHALE J, FUENTES HUTFILTER U. Assessing thetechnical potential of ASEAN countries to achieve 100% renewable energysupply[J]. Sustainable Energy Technologies and Assessments, 2020, 42:100878.
[169] SILALAHI D F, BLAKERS A, LU B, et al. Indonesia’s Vast Off-RiverPumped Hydro Energy Storage Potential[J]. Energies, 2022, 15(9): 3457.
[170] BURKE P J, WIDNYANA J, ANJUM Z, et al. Overcoming barriers to solarand wind energy adoption in two Asian giants: India and Indonesia[J].Energy Policy, 2019, 132: 1216-1228.
[171] KEMENTERIAN E. Rencana umum ketenagalistrikan nasional 2019-2038[R]. Jakarta: Kementrian ESDM, 2019.
[172] TAMBUNAN H B, SURYA A S, JINTAKA D R, et al. Review ProsesPerencanaan Jangka Panjang Sistem Tenaga Listrik[J]. EPIC (Journal ofElectrical Power, Instrumentation and Control), 2021, 4(1).
[173] GREENE L A. Ehpnet: United Nations Framework Convention on ClimateChange[J].2000: A353-A353.
[174] UNFCCC. First nationally determined contribution republic of Indonesia:United Nations framework convention on climate change [R/OL]. (2016-07-12)
[2022-10-30]. http://www4.unfccc.int/ndcregistry/PublishedDocuments/Indonesia%20First/First%20NDC%20Indonesia_submitted%20to%20UNFCCC%20Set_November%20%202016.pdf.
[175] TACCONI L. Indonesia’s NDC bodes ill for the Paris Agreement[J]. NatureClimate Change, 2018, 8(10): 842-842.
[176] VAN B L P H, BIERKENS M F P. The Global Hydrological Model PCRGLOBWB: Conceptualization, Parameterization and Verification[R/OL].The Netherlands: Utrecht University, Utrecht, 2008,
[177] TEBALDI C, KNUTTI R. The use of the multi-model ensemble inprobabilistic climate projections[J]. Philosophical Transactions of the RoyalSociety A: Mathematical, Physical and Engineering Sciences, Royal Society,2007, 365(1857): 2053-2075.
[178] HEMPEL S, FRIELER K, WARSZAWSKI L, et al. A trend-preserving biascorrection-the ISI-MIP approach[J]. Earth System Dynamics, 2013, 4(2):219-236.
[179] FRIELER K, LANGE S, PIONTEK F, et al. Assessing the impacts of 1.5 °Cglobal warming - simulation protocol of the Inter-Sectoral Impact ModelIntercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development,Copernicus GmbH, 2017, 10(12): 4321-4345.
[180] FRICKO O, HAVLIK P, ROGELJ J, et al. The marker quantification of theShared Socioeconomic Pathway 2: A middle-of-the-road scenario for the21st century[J]. Global Environmental Change, 2017, 42: 251-267.
[181] SCHELLNHUBER H J, FRIELER K, KABAT P. The elephant, the blind,and the intersectoral intercomparison of climate impacts[J]. Proceedings ofthe National Academy of Sciences, Proceedings of the National Academy ofSciences, 2014, 111(9): 3225-3227.
[182] 胡婷, 孙颖, 张学斌. 全球 1.5 和 2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26): 3098-3111.
[183] SHI C, JIANG Z-H, CHEN W-L, et al. Changes in temperature extremesover China under 1.5°C and 2°C global warming targets[J]. Advances inClimate Change Research, 2018, 9(2): 120-129.
[184] VAN VUUREN D P, EDMONDS J, KAINUMA M, et al. The representativeconcentration pathways: an overview[J]. Climatic Change, 2011, 109(1): 5.
[185] LEHNER B, VERDIN K, JARVIS A. New global hydrography derived fromspaceborne elevation data[J]. Eos, 2008, 89(10): 93-94.
[186] VERNON C R, ZULJEVIC N, RICE J S, et al. CERF - A Geospatial Modelfor Assessing Future Energy Production Technology ExpansionFeasibility[J]. Journal of Open Research Software, 2018, 6(1): 20.
[187] LEDUC S. Development of an optimization model for the location ofbiofuel production plants[D]. Luleå tekniska universitet, 2009.
[188] LEDUC S, SCHWAB D, DOTZAUER E, et al. Optimal location of woodgasification plants for methanol production with heat recovery[J].International Journal of Energy Research, 2008, 32(12): 1080-1091.
[189] LEDUC S, LUNDGREN J, FRANKLIN O, et al. Location of a biomassbased methanol production plant: A dynamic problem in northern Sweden[J].Applied Energy, 2010, 87(1): 68-75.
[190] MESFUN S, SANCHEZ D L, LEDUC S, et al. Power-to-gas and power-toliquid for managing renewable electricity intermittency in the AlpineRegion[J]. Renewable Energy, 2017, 107: 361-372.
[191] KHATIWADA D, LEDUC S, SILVEIRA S, et al. Optimizing ethanol andbioelectricity production in sugarcane biorefineries in Brazil[J]. RenewableEnergy, 2016, 85: 371-386.
[192] NATARAJAN K, LEDUC S, PELKONEN P, et al. Optimal Locations forMethanol and CHP Production in Eastern Finland[J]. BioEnergy Research,2012, 5(2): 412-423.
[193] WETTERLUND E, LEDUC S, DOTZAUER E, et al. Optimal localisationof biofuel production on a European scale[J]. Energy, 2012, 41(1): 462-472.
[194] MESFUN S, LEDUC S, PATRIZIO P, et al. Spatio-temporal assessment ofintegrating intermittent electricity in the EU and Western Balkans powersector under ambitious CO2 emission policies[J]. Energy, 2018, 164: 676-693.
[195] TIMILSINA G R, CSORDÁS S, MEVEL S. When does a carbon tax onfossil fuels stimulate biofuels?[J]. Ecological Economics, 2011, 70(12):2400-2415.
[196] BLACK, VEATCH. Cost and performance data for power generationtechnologies[R].2012.
[197] SCHNEIDER A, JOST A, COULON C, et al. Global-scale river networkextraction based on high-resolution topography and constrained by lithology,climate, slope, and observed drainage density[J]. Geophysical ResearchLetters, 2017, 44(6): 2773-2781.
[198] SOLARIN S A, BELLO M O, BEKUN F V. Sustainable electricitygeneration: the possibility of substituting fossil fuels for hydropower andsolar energy in Italy[J]. International Journal of Sustainable Development& World Ecology, 2021, 28(5): 429-439.
[199] ANDERSON D, MOGGRIDGE H, WARREN P, et al. The impacts of ‘runof-river’ hydropower on the physical and ecological condition of rivers[J].Water and Environment Journal, 2015, 29(2): 268-276.
[200] KURIQI A, PINHEIRO A N, SORDO-WARD A, et al. Ecological impactsof run-of-river hydropower plants—Current status and prospects on thebrink of energy transition[J]. Renewable and Sustainable Energy Reviews,2021, 142: 110833.
[201] HERBERT R B, MALMSTRÖM M, EBENÅ G, et al. Quantification ofAbiotic Reaction Rates in Mine Tailings: Evaluation of Treatment Methodsfor Eliminating Iron- and Sulfur-Oxidizing Bacteria[J]. EnvironmentalScience & Technology, 2005, 39(3): 770-777.
[202] WU X, WANG Z, XIANG X, et al. Dynamic simulation of CO2 flux in ahydropower reservoir in Southwest China[J]. Journal of Hydrology, 2022,613: 128354.
[203] KELLER P S, MARCÉ R, OBRADOR B, et al. Global carbon budget ofreservoirs is overturned by the quantification of drawdown areas[J]. NatureGeoscience, 2021, 14(6): 402-408.
[204] DEEMER B R, HARRISON J A, LI S, et al. Greenhouse Gas Emissionsfrom Reservoir Water Surfaces: A New Global Synthesis[J]. BioScience,2016, 66(11): 949-964.
[205] GORI A, LIN N, XI D, et al. Tropical cyclone climatology change greatlyexacerbates US extreme rainfall-surge hazard[J]. Nature Climate Change,2022, 12(2): 171-178.
[206] KEMP L, XU C, DEPLEDGE J, et al. Climate Endgame: Exploringcatastrophic climate change scenarios[J]. Proceedings of the NationalAcademy of Sciences, 2022, 119(34): e2108146119.
[207] IPCC. Climate change 2022: impacts, adaptation and vulnerability. Workinggroup II contribution to the IPCC sixth assessment report[R]. 2022.
[208] SHUKLA J B, VERMA M, MISRA A K. Effect of global warming on sealevel rise: A modeling study[J]. Ecological Complexity, 2017, 32: 99-110.
[209] CUTLER M J, MARLON J, HOWE P, et al. ‘Is global warming affectingthe weather?’ Evidence for increased attribution beliefs among coastalversus inland US residents[J]. Environmental Sociology, Routledge, 2020,6(1): 6-18.
[210] HOANG L P, VAN VLIET M T H, KUMMU M, et al. The Mekong’s futureflows under multiple drivers: How climate change, hydropowerdevelopments and irrigation expansions drive hydrological changes[J].Science of The Total Environment, 2019, 649: 601-609.
[211] SPERNA WEILAND F C, VRUGT J A, VAN BEEK R P H, et al. Significantuncertainty in global scale hydrological modeling from precipitation dataerrors[J]. Journal of Hydrology, 2015, 529: 1095-1115.
[212] BIEMANS H, HUTJES R W A, KABAT P, et al. Effects of PrecipitationUncertainty on Discharge Calculations for Main River Basins[J]. Journal ofHydrometeorology, American Meteorological Society, 2009, 10(4): 1011-1025.
[213] NREL C. Performance data for power generation technologies[J].NationalRenewable Energy Laboratory, 2012.
[214] HOEGH-GULDBERG O, JACOB D, BINDI M, et al. Impacts of 1.5 Cglobal warming on natural and human systems[J]. Global warming of 1.5°C., IPCC Secretariat, 2018.
[215] FERRARI L, ESPOSITO F, BECCIANI M, et al. Development of anoptimization algorithm for the energy management of an industrial SmartUser[J]. Applied Energy, 2017, 208: 1468-1486.
[216] SHER F, CURNICK O, AZIZAN M T. Sustainable conversion of renewableenergy sources[J]. Sustainability, 2021, 13(5): 2940.
[217] JOHANNESSON J, CLOWES D. Energy Resources and Markets -Perspectives on the Russia-Ukraine War[J]. European Review, 2022, 30(1):4-23.
[218] CHONG C T, FAN Y V, LEE C T, et al. Post COVID-19 ENERGYsustainability and carbon emissions neutrality[J]. Energy, 2022, 241:122801.
[219] AHMED I, PARIKH P, SIANJASE G, et al. The impact decades-longdependence on hydropower in El Niño impact-prone Zambia is having oncarbon emissions through backup diesel generation[J]. EnvironmentalResearch Letters, 2020, 15(12): 124031.
[220] GILFILLAN D, PITTOCK J. Pumped Storage Hydropower for Sustainableand Low-Carbon Electricity Grids in Pacific Rim Economies[J]. Energies,2022, 15(9): 3139.
[221] HASAN M H, MAHLIA T M I, NUR H. A review on energy scenario andsustainable energy in Indonesia[J]. Renewable and Sustainable EnergyReviews, 2012, 16(4): 2316-2328.
[222] CHAUDHARI S, BROWN E, QUISPE-ABAD R, et al. In-stream turbinesfor rethinking hydropower development in the Amazon basin[J]. NatureSustainability, 2021, 4(8): 680-687.
[223] DENG Z D, COLOTELO A H, BROWN R S, et al. Environmental IssuesRelated to Conventional Hydropower [G]//Alternative Energy and ShaleGas Encyclopedia. John Wiley & Sons, Ltd, 2016: 404-409.
[224] 钟姗姗. 流域水电梯级开发项目累积环境影响作用机制及评价研究[D]. 中南大学, 2014.
[225] YU L, WU X, WU S, et al. Multi-objective optimal operation of cascadehydropower plants considering ecological flow under different ecologicalconditions[J]. Journal of Hydrology, 2021, 601: 126599.
[226] ZHANG H, CHANG J, GAO C, et al. Cascade hydropower plants operationconsidering comprehensive ecological water demands[J]. EnergyConversion and Management, 2019, 180: 119-133.
[227] GRILL G, LEHNER B, THIEME M, et al. Mapping the world’s free-flowingrivers[J]. Nature, 2019, 569(7755): 215-221.
[228] ZHOU Y, GUO S. Incorporating ecological requirement into multipurposereservoir operating rule curves for adaptation to climate change[J]. Journalof Hydrology, 2013, 498: 153-164.
[229] ELKIRAN G, ASLANOVA F, HIZIROGLU S. Effluent Water ReusePossibilities in Northern Cyprus[J]. Water, 2019, 11(2): 191.
[230]ANTIA D D J. Catalytic Partial Desalination of Saline Water[J]. Water, 2022,14(18): 2893.
[231] 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449.
[232] AKAEV A A, DAVYDOVA O I. Forecasting the Indicators of Kondratiev’sGreen Economic Wave (2018-2050), the “Great Energy Transition” and itsImpact on the Socio-Economic Development of the World [G]//Devezas TC, Leitão J C C, Yegorov Y, et al.Global Challenges of Climate Change,Vol.1: Green Energy, Decarbonization, Forecasting the Green Transition.Cham:Springer International Publishing, 2022: 181-205.
[233] MADSUHA A F, SETIAWAN E A, WIBOWO N, et al. Mapping 30 Years ofSustainability of Solar Energy Research in Developing Countries: IndonesiaCase[J]. Sustainability, 2021, 13(20): 11415.
[234] VAUTARD R, GOBIET A, SOBOLOWSKI S, et al. The European climateunder a 2 °C global warming [J]. Environmental Research Letters, 2014,9(3): 1-12.

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentSchool of Environmental Science and Engineering
Recommended Citation
GB/T 7714
孟莹. 气候变暖背景下苏门答腊岛水电潜能变化研究[D]. 哈尔滨. 哈尔滨工业大学,2023.
Files in This Item:
File Name/Size DocType Version Access License
11749299-孟莹-环境科学与工程学(8856KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[孟莹]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[孟莹]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[孟莹]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.