中文版 | English


Name pinyin
School number
0814 土木工程
Subject category of dissertation
08 工学
Mentor unit
Tutor of External Organizations
Vladan Babovic
Tutor units of foreign institutions
Publication Years
Submission date
Place of Publication

Groundwater is a crucial freshwater resource utilized for daily human activities, particularly in regions characterized by semi-arid or arid conditions. Nevertheless, the continuous development of society and technology has led to substantial anthropogenic influences on the groundwater environment, resulting in a decline in groundwater quality. Previous studies have primarily focused on comprehending the processes of groundwater contamination considering groundwater contamination as a static, steady-state condition, largely overlooking the dynamic changes caused by anthropogenic activities. Also, the variation of influence of each factor on groundwater quality was ignored. Consequently, the primary objective of this thesis is to investigate how anthropogenic activities under diverse conditions alter the susceptibility of groundwater to contamination. Nitrate, a commonly occurring contaminant in groundwater, is utilized as an illustrative example.

The study first reveals that the influences of anthropogenic nitrogen inputs on the susceptibility of groundwater to contamination resulting from agricultural, livestock, and urbanization activities are larger than the physical-related factors. Furthermore, the accumulation of contaminants from historical practices can result in long-term contamination as significant time lags exist between the implementation of management practices and improvements in groundwater quality. Building upon the assessment of each contributing factor, a redefined index-based methodology is proposed, enabling accurate predictions of the likelihood of groundwater contamination with limited available information, and achieving an accuracy rate of 70% under varying environmental conditions. In addition to nonpoint source contamination originating from terrestrial sources, the study also explores the potential influence of riverine systems on groundwater quality. Considerable area-weighted nitrogen leakage fluxes from rivers are frequently observed in regions with losing streams. The interconnected network of streams across the continental United States (CONUS) enables the transport and accumulation of contaminants from local sources to uncontaminated areas, thereby expanding the regions susceptible to groundwater contamination. Furthermore, while agricultural activities are the primary contributors of nitrate contamination in groundwater, the study identifies an increasing impact of livestock production on groundwater nitrate concentrations. Changes in dietary habits have the potential for reducing the susceptibility of groundwater to contamination. The study quantifies the resource requirements and environmental effects associated with conventional meat products and compares them with alternative meat products. Life cycle analyses indicate that cultured meat products have the lowest resource requirements, and scenarios involving the substitution of meat alternatives exhibit significant mitigation effects on groundwater nitrate contamination.

To summarize, this thesis contributes to the understanding of dynamic groundwater contamination risks and the varying impacts resulting from anthropogenic activities, extending beyond the traditional focus on steady-state conditions. It introduces an advanced methodology for better comprehending and assessing dynamic groundwater contamination risks, while also conducting comprehensive analyses of the influences of agriculture, livestock, and riverine systems.

Training classes
Enrollment Year
Year of Degree Awarded
References List

[Abeshu, G. W., Li, H. Y., Zhu, Z., Tan, Z., Leung, L. R., & Li, H. Y. (2022). Median bed-material sediment particle size across rivers in the contiguous US. Earth System Science Data, 14, 929–942. https://doi.org/10.5194/essd-14-929-2022Adam, D. (2021). How far will global population rise? Researchers can’t agree. Nature, 597, 462–465. https://doi.org/10.1038/d41586-021-02522-6Ahuja, K., & Bayas, S. (2020). U.S. Plant-Based Meat Market Size. https://www.gminsights.com/industry-analysis/us-plant-based-meat-marketAlexander, P., Brown, C., Arneth, A., Dias, C., Finnigan, J., Moran, D., & Rounsevell, M. D. A. (2017). Could consumption of insects, cultured meat or imitation meat reduce global agricultural land use? Global Food Security, 15(March), 22–32. https://doi.org/10.1016/j.gfs.2017.04.001Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V., & Brakebill, J. W. (2008). Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science and Technology, 42, 822–830. https://doi.org/10.1021/es0716103Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., & Hackett, G. (1987). DRASTIC : A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. NWWA/Epa-600/2-87-035.Ascott, M. J., Gooddy, D. C., Wang, L., Stuart, M. E., Lewis, M. A., Ward, R. S., & Binley, A. M. (2017). Global patterns of nitrate storage in the vadose zone. Nature Communications, 8, 1416. https://doi.org/10.1038/s41467-017-01321-wAtor, S. W. (2019). Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment loads in streams of the northeastern United States. In Scientific Investigations Report. https://doi.org/10.3133/sir20195118Babovic, V., Keijzer, M., Aguilera, D. R., & Harrington, J. (2004). An evolutionary approach to knowledge induction: Genetic programming in hydraulic engineering. Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges - Proceedings of the World Water and Environmental Resources Congress 2001. https://doi.org/10.1061/40569(2001)64Ballard, T. C., Sinha, E., & Michalak, A. M. (2019). Long-Term Changes in Precipitation and Temperature Have Already Impacted Nitrogen Loading. Environmental Science and Technology. https://doi.org/10.1021/acs.est.8b06898Barlow, P. M., & Leake, S. A. (2012). Streamflow depletion by wells-Understanding and managing the effects of groundwater pumping on streamflow. U.S. Geological Survey Circular 1376.Basu, N. B., Van Meter, K. J., Byrnes, D. K., Van Cappellen, P., Brouwer, R., Jacobsen, B. H., Jarsjö, J., Rudolph, D. L., Cunha, M. C., Nelson, N., Bhattacharya, R., Destouni, G., & Olsen, S. B. (2022). Managing nitrogen legacies to accelerate water quality improvement. Nature Geoscience, 15, 97–105. https://doi.org/10.1038/s41561-021-00889-9Beaudoin, N., Saad, J. K., Van Laethem, C., Machet, J. M., Maucorps, J., & Mary, B. (2005). Nitrate leaching in intensive agriculture in Northern France: Effect of farming practices, soils and crop rotations. Agriculture, Ecosystems and Environment, 111, 292–310. https://doi.org/10.1016/j.agee.2005.06.006Belitz, K., Fram, M. S., Lindsey, B. D., Stackelberg, P. E., Bexfield, L. M., Johnson, T. D., Jurgens, B. C., Kingsbury, J. A., McMahon, P. B., & Dubrovsky, N. M. (2022). Quality of Groundwater Used for Public Supply in the Continental United States: A Comprehensive Assessment. ACS ES&T Water, 2(12), 2645–2656. https://doi.org/10.1021/acsestwater.2c00390Belitz, K., Watson, E., Johnson, T. D., & Sharpe, J. (2019). Secondary Hydrogeologic Regions of the Conterminous United States. Groundwater. https://doi.org/10.1111/gwat.12806Beman, J. M., Arrigo, K. R., & Matson, P. A. (2005). Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature, 434, 211–214. https://doi.org/10.1038/nature03370Beusen, A. H. W., Van Beek, L. P. H., Bouwman, A. F., Mogollón, J. M., & Middelburg, J. J. (2015). Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - Description of IMAGE-GNM and analysis of performance. Geoscientific Model Development, 8(12), 4045–4067. https://doi.org/10.5194/gmd-8-4045-2015Bierman, P. M., Rosen, C. J., Venterea, R. T., & Lamb, J. A. (2012). Survey of nitrogen fertilizer use on corn in Minnesota. Agricultural Systems, 109, 43–52. https://doi.org/10.1016/j.agsy.2012.02.004Binley, A., Ullah, S., Heathwaite, A. L., Heppell, C., Byrne, P., Lansdown, K., Trimmer, M., & Zhang, H. (2013). Revealing the spatial variability of water fluxes at the groundwater-surface water interface. Water Resources Research. https://doi.org/10.1002/wrcr.20214Bohrer, B. M. (2017). Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science and Technology, 65, 103–112. https://doi.org/10.1016/j.tifs.2017.04.016Bordiean, A., Krzyżaniak, M., Stolarski, M. J., Czachorowski, S., & Peni, D. (2020). Will yellow mealworm become a source of safe proteins for Europe? Agriculture (Switzerland), 10(6), 1–30. https://doi.org/10.3390/agriculture10060233Bouwer, H. (2000). Integrated water management: Emerging issues and challenges. Agricultural Water Management. https://doi.org/10.1016/S0378-3774(00)00092-5Boy-Roura, M., Nolan, B. T., Menció, A., & Mas-Pla, J. (2013). Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). Journal of Hydrology, 505, 150–162. https://doi.org/10.1016/j.jhydrol.2013.09.048Brown, J. F., Tollerud, H. J., Barber, C. P., Zhou, Q., Dwyer, J. L., Vogelmann, J. E., Loveland, T. R., Woodcock, C. E., Stehman, S. V., Zhu, Z., Pengra, B. W., Smith, K., Horton, J. A., Xian, G., Auch, R. F., Sohl, T. L., Sayler, K. L., Gallant, A. L., Zelenak, D., … Rover, J. (2020). Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2019.111356Burke, I. C., Lauenroth, W. K., & Coffin, D. P. (1995). Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program. Ecological Applications. https://doi.org/10.2307/1941987Burow, K. R., Nolan, B. T., Rupert, M. G., & Dubrovsky, N. M. (2010). Nitrate in groundwater of the United States, 1991-2003. Environmental Science and Technology, 44(13), 4988–4997. https://doi.org/10.1021/es100546yCai, H., Liu, S., Shi, H., Zhou, Z., Jiang, S., & Babovic, V. (2022). Toward improved lumped groundwater level predictions at catchment scale: Mutual integration of water balance mechanism and deep learning method. Journal of Hydrology, 613, 128495. https://doi.org/10.1016/j.jhydrol.2022.128495Cai, H., Shi, H., Liu, S., & Babovic, V. (2021). Impacts of regional characteristics on improving the accuracy of groundwater level prediction using machine learning: The case of central eastern continental United States. Journal of Hydrology: Regional Studies. https://doi.org/10.1016/j.ejrh.2021.100930Cao, P., Lu, C., & Yu, Z. (2018). Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850-2015: Application rate, timing, and fertilizer types. Earth System Science Data. https://doi.org/10.5194/essd-10-969-2018Chen, D., Shen, H., Hu, M., Wang, J., Zhang, Y., & Dahlgren, R. A. (2018). Legacy Nutrient Dynamics at the Watershed Scale: Principles, Modeling, and Implications. Advances in Agronomy, 149, 237–313. https://doi.org/10.1016/bs.agron.2018.01.005Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785Chriki, S., & Hocquette, J. F. (2020). The Myth of Cultured Meat: A Review. Frontiers in Nutrition, 7, 1–9. https://doi.org/10.3389/fnut.2020.00007Christen, C. (2021). Meat Consumption in the U.S. Is Growing at an Alarming Rate. https://sentientmedia.org/meat-consumption-in-the-us/Civita, M., & De Maio, M. (2004). Assessing and mapping groundwater vulnerability to contamination: The Italian “combined” approach. Geofisica Internacional.Clark, M. A., Springmann, M., Hill, J., & Tilman, D. (2019). Multiple health and environmental impacts of foods. Proceedings of the National Academy of Sciences of the United States of America, 116, 23357–23362. https://doi.org/10.1073/pnas.1906908116Connell, L. D., & Van Den Daele, G. (2003). A quantitative approach to aquifer vulnerability mapping. Journal of Hydrology. https://doi.org/10.1016/S0022-1694(03)00038-6Dalgaard, R., Schmidt, J., Halberg, N., Christensen, P., Thrane, M., & Pengue, W. A. (2008). LCA of soybean meal. International Journal of Life Cycle Assessment, 13(3), 240–254. https://doi.org/10.1065/lca2007.06.342de Graaf, I. E. M., Gleeson, T., (Rens) van Beek, L. P. H., Sutanudjaja, E. H., & Bierkens, M. F. P. (2019). Environmental flow limits to global groundwater pumping. Nature, 574, 90–94. https://doi.org/10.1038/s41586-019-1594-4de Vries, M., & de Boer, I. J. M. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock Science, 128, 1–11. https://doi.org/10.1016/j.livsci.2009.11.007De Wit, M. J. M. (2001). Nutrient fluxes at the river basin scale. I: The Polflow model. Hydrological Processes. https://doi.org/10.1002/hyp.175Dent, C. L., Grimm, N. B., Martí, E., Edmonds, J. W., Henry, J. C., & Welter, J. R. (2007). Variability in surface-subsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. Journal of Geophysical Research: Biogeosciences, 112, 67. https://doi.org/10.1029/2007JG000467Di, H. J., & Cameron, K. C. (2002). Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, 64, 237–256. https://doi.org/10.1023/A:1021471531188Díaz, P. A., Peréz-Santos, I., Álvarez, G., Garreaud, R., Pinilla, E., Díaz, M., Sandoval, A., Araya, M., Álvarez, F., Rengel, J., Montero, P., Pizarro, G., López, L., Iriarte, L., Igor, G., & Reguera, B. (2021). Multiscale physical background to an exceptional harmful algal bloom of Dinophysis acuta in a fjord system. Science of the Total Environment, 773, 145621. https://doi.org/10.1016/j.scitotenv.2021.145621Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science, 321, 926–929. https://doi.org/10.1126/science.1156401Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., & Wichelns, D. (2015). Managing Water and Fertilizer for Sustainable Agricultural Intensification. In International Fertilizer Industry Association.Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. A. M., Hamilton, P. A., Hitt, K. J., Mueller, D. K., Munn, M. D., Nolan, B. T., Puckett, L. J., Rupert, M. G., Short, T. M., Spahr, N. E., Sprague, L. A., & Wilber, W. G. (2010). The quality of our Nation’s waters-nutrients in the Nation ’s streams and groundwater, 1992 – 2004. In U.S. Geological Survey Circular 1350.Earman, S., & Dettinger, M. (2011). Potential impacts of climate change on groundwater resources - A global review. Journal of Water and Climate Change. https://doi.org/10.2166/wcc.2011.034EIT FOOD. (2022). Insects as food and feed in Europe: the future of protein? https://www.eitfood.eu/blog/insects-as-food-and-feed-in-europe-the-future-of-proteinErrickson, F., Kuruc, K., & McFadden, J. (2021). Animal-based foods have high social and climate costs. Nature Food, 2, 274–281. https://doi.org/10.1038/s43016-021-00265-1Falcone, J. A. (2020). Tabular data for selected items from the Census of Agriculture for the period 1950-2017 for counties in the conterminous United States. U.S. Geological Survey Data Release. https://doi.org/10.5066/P9S4WQHUFalcone, J. A., Murphy, J. C., & Sprague, L. A. (2018). Regional patterns of anthropogenic influences on streams and rivers in the conterminous United States, from the early 1970s to 2012. Journal of Land Use Science. https://doi.org/10.1080/1747423X.2019.1590473Finch, J. W. (1998). Estimating direct groundwater recharge using a simple water balance model - Sensitivity to land surface parameters. Journal of Hydrology. https://doi.org/10.1016/S0022-1694(98)00225-XFortune Business Insights. (2021). U.S. Meat Market Size, Share & COVID-19 Impact Analysis. https://www.fortunebusinessinsights.com/u-s-meat-market-105342Foster, S. S. D., & Chilton, P. J. (2003). Groundwater: The processes and global significance of aquifer degradation. In Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2003.1380Frind, E. O., Molson, J. W., & Rudolph, D. L. (2006). Well vulnerability: A quantitative approach for source water protection. In Ground Water. https://doi.org/10.1111/j.1745-6584.2006.00230.xFroehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D., & Halpern, B. S. (2018). Comparative terrestrial feed and land use of an aquaculture-dominant world. Proceedings of the National Academy of Sciences of the United States of America, 115, 5295–5300. https://doi.org/10.1073/pnas.1801692115Gabor, R. S., Hall, S. J., Eiriksson, D. P., Jameel, Y., Millington, M., Stout, T., Barnes, M. L., Gelderloos, A., Tennant, H., Bowen, G. J., Neilson, B. T., & Brooks, P. D. (2017). Persistent Urban Influence on Surface Water Quality via Impacted Groundwater. Environmental Science and Technology. https://doi.org/10.1021/acs.est.7b00271Gallo, E. L., Meixner, T., Lohse, K. A., & Nicholas, H. (2020). Estimating Surface Water Presence and Infiltration in Ephemeral to Intermittent Streams in the Southwestern US. Frontiers in Water, 2, 572950. https://doi.org/10.3389/frwa.2020.572950Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vörösmarty, C. J. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153–226. https://doi.org/10.1007/s10533-004-0370-0Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G., & others. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO).Gerhardt, C. (2019). You will be eating replacement meats within 20 years. Here’s why. https://www.weforum.org/agenda/2019/06/you-will-be-eating-replacement-meats-within-20-years-heres-why/Gilbert, M., Nicolas, G., Cinardi, G., Van Boeckel, T. P., Vanwambeke, S. O., Wint, G. R. W., & Robinson, T. P. (2018). Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Scientific Data, 5, 1–11. https://doi.org/10.1038/sdata.2018.227Gilliom, R. J., Alley, W. M., & Gurtz, M. E. (1995). Design of the National Water-Quality Assessment Program: occurrence and distribution of water-quality conditions. US Geological Survey Circular.Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., & Kiel, B. (2015). Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 8, 941–945. https://doi.org/10.1038/ngeo2567Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge. Water Resources Research. https://doi.org/10.1002/2014WR016825Govorushko, S. (2019). Global status of insects as food and feed source: A review. Trends in Food Science and Technology, 91(July), 436–445. https://doi.org/10.1016/j.tifs.2019.07.032Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. In Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2011.05.002Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. In Nature. https://doi.org/10.1038/nature06592Gurdak, J. J., & Qi, S. L. (2012). Vulnerability of recently recharged groundwater in principle aquifers of the United States to nitrate contamination. Environmental Science and Technology, 46(11), 6004–6012. https://doi.org/10.1021/es300688bHalpern, B. S., Frazier, M., Verstaen, J., Rayner, P.-E., Clawson, G., Blanchard, J. L., Cottrell, R. S., Froehlich, H. E., Gephart, J. A., Jacobsen, N. S., Kuempel, C. D., McIntyre, P. B., Metian, M., Moran, D., Nash, K. L., Többen, J., & Williams, D. R. (2022). The environmental footprint of global food production. Nature Sustainability, 5, 1027–1039. https://doi.org/10.1038/s41893-022-00965-xHan, D., Currell, M. J., & Cao, G. (2016). Deep challenges for China’s war on water pollution. In Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.08.078Harbaugh, A. W. (2005). MODFLOW-2005, The U.S. Geological Survey modular ground-water model — the ground-water flow process. U.S. Geological Survey, Techniques and Methods.Harvey, J. W., Conklin, M. H., & Koelsch, R. S. (2003). Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Advances in Water Resources, 26, 939–950. https://doi.org/10.1016/S0309-1708(03)00085-XHastie, T., Tibshirani, R., & Friedman, J. (2009). Springer Series in Statistics The Elements of Statistical Learning - Data Mining, Inference, and Prediction. In Springer.Havlík, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M. C., Mosnier, A., Thornton, P. K., Böttcher, H., Conant, R. T., Frank, S., Fritz, S., Fuss, S., Kraxner, F., & Notenbaert, A. (2014). Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 111, 3709–3714. https://doi.org/10.1073/pnas.1308044111He, X., Pan, M., Wei, Z., Wood, E. F., & Sheffield, J. (2020). A global drought and flood catalogue from 1950 to 2016. In Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-18-0269.1Hellerstein, D. M. (2017). The US Conservation Reserve Program: The evolution of an enrollment mechanism. Land Use Policy. https://doi.org/10.1016/j.landusepol.2015.07.017Herrero, M., Henderson, B., Havlík, P., Thornton, P. K., Conant, R. T., Smith, P., Wirsenius, S., Hristov, A. N., Gerber, P., Gill, M., Butterbach-Bahl, K., Valin, H., Garnett, T., & Stehfest, E. (2016). Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 6, 452–461. https://doi.org/10.1038/nclimate2925Hino, M., Odaka, Y., Nadaoka, K., & Sato, A. (1988). Effect of initial soil moisture content on the vertical infiltration process - A guide to the problem of runoff-ratio and loss. Journal of Hydrology. https://doi.org/10.1016/0022-1694(88)90102-3Hong, B., Swaney, D. P., & Howarth, R. W. (2013). Estimating net anthropogenic nitrogen inputs to U.S. watersheds: Comparison of methodologies. Environmental Science and Technology. https://doi.org/10.1021/es303437cHoos, A. B., & Roland II, V. L. (2019). Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment loads in the southeastern United States. In Scientific Investigations Report. https://doi.org/10.3133/sir20195135Horton, J. D., San Juan, C. A., & Stoeser, D. B. (2017). The State Geologic Map Compilation (SGMC) Geodatabase of the Conterminous United States (ver. 1.1, August 2017). In U.S. Geological Survey Data Series 1052.Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., Johnes, P., Mörth, C. M., & Marino, R. (2012). Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 10, 37–43. https://doi.org/10.1890/100178Howarth, R. W., Boyer, E. W., Pabich, W. J., & Galloway, J. N. (2002). Nitrogen Use in the United States from 1961–2000 and Potential Future Trends. AMBIO: A Journal of the Human Environment, 31, 88–96. https://doi.org/10.1639/0044-7447(2002)031
[0088:nuitus]2.0.co;2Hu, Y., Cheng, H., & Tao, S. (2017). Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International, 107, 111–130. https://doi.org/10.1016/j.envint.2017.07.003Hua, S., Jing, H., Yao, Y., Guo, Z., Lerner, D. N., Andrews, C. B., & Zheng, C. (2020). Can groundwater be protected from the pressure of china’s urban growth? Environment International. https://doi.org/10.1016/j.envint.2020.105911Huang, L., Zeng, G., Liang, J., Hua, S., Yuan, Y., Li, X., Dong, H., Liu, J., Nie, S., & Liu, J. (2017). Combined Impacts of Land Use and Climate Change in the Modeling of Future Groundwater Vulnerability. Journal of Hydrologic Engineering. https://doi.org/10.1061/(asce)he.1943-5584.0001493Hyndman, D. W., Xu, T., Deines, J. M., Cao, G., Nagelkirk, R., Viña, A., McConnell, W., Basso, B., Kendall, A. D., Li, S., Luo, L., Lupi, F., Ma, D., Winkler, J. A., Yang, W., Zheng, C., & Liu, J. (2017). Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling. Geophysical Research Letters. https://doi.org/10.1002/2017GL074429Ignaszewski, E. (2021). 2021 U.S. retail market insights: plant-based foods. https://gfi.org/wp-content/uploads/2022/10/2021-U.S.-retail-market-insights_Plant-based-foods_GFI-1.pdfIntergovernmental Panel on Climate Change. (2015). Climate Change 2014: Mitigation of Climate Change. In Cambridge University Press. Cambridge University Press. https://doi.org/10.1017/CBO9781107415416Jang, C. S., & Chen, S. K. (2015). Integrating indicator-based geostatistical estimation and aquifer vulnerability of nitrate-N for establishing groundwater protection zones. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2015.01.077Jarvis, A., Reuter, H. . ., Nelson, A. D., & Guevara, E. (2008). Hole-filled SRTM for the globe Version 4 : data grid. CGIAR Consortium for Spatial Information.Jasechko, S., Seybold, H., Perrone, D., Fan, Y., & Kirchner, J. W. (2021). Widespread potential loss of streamflow into underlying aquifers across the USA. Nature, 591, 391–395. https://doi.org/10.1038/s41586-021-03311-xJu, X., Liu, X., Zhang, F., & Roelcke, M. (2004). Nitrogen Fertilization, Soil Nitrate Accumulation, and Policy Recommendations in Several Agricultural Regions of China. AMBIO: A Journal of the Human Environment. https://doi.org/10.1639/0044-7447(2004)033
[0300:nfsnaa]2.0.co;2Katz, B. G., Berndt, M. P., & Crandall, C. A. (2014). Factors affecting the movement and persistence of nitrate and pesticides in the surficial and upper Floridan aquifers in two agricultural areas in the southeastern United States. Environmental Earth Sciences, 71, 2779–2795. https://doi.org/10.1007/s12665-013-2657-8Kayabalı, K., Çelik, M., Karatosun, H., Arıgün, Z., & Koçbay, A. (1999). The influence of a heavily polluted urban river on the adjacent aquifer systems. Environmental Geology, 38, 233–243. https://doi.org/10.1007/s002540050420Kazakis, N., & Voudouris, K. S. (2015). Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2015.03.035Keijzer, M., Babovic, V., Ryan, C., O’Neill, M., & Cattolico, M. (2001). Adaptive Logic Programming. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001).Kim, S. H., Kim, H. R., Yu, S., Kang, H. J., Hyun, I. H., Song, Y. C., Kim, H., & Yun, S. T. (2021). Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management. Water Research, 191, 116814. https://doi.org/10.1016/j.watres.2021.116814Kivits, T., Broers, H. P., Beeltje, H., van Vliet, M., & Griffioen, J. (2018). Presence and fate of veterinary antibiotics in age-dated groundwater in areas with intensive livestock farming. Environmental Pollution, 241, 988–998. https://doi.org/10.1016/j.envpol.2018.05.085Knoll, L., Breuer, L., & Bach, M. (2019). Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Science of the Total Environment, 668, 1317–1327. https://doi.org/10.1016/j.scitotenv.2019.03.045Koh, E. H., Kaown, D., Kim, H. J., Lee, K. K., Kim, H., & Park, S. (2019). Nationwide groundwater monitoring around infectious-disease-caused livestock mortality burials in Korea: Superimposed influence of animal leachate on pre-existing anthropogenic pollution. Environment International, 129, 376–388. https://doi.org/10.1016/j.envint.2019.04.073Kura, N. U., Ramli, M. F., Ibrahim, S., Sulaiman, W. N. A., Aris, A. Z., Tanko, A. I., & Zaudi, M. A. (2015). Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-014-3444-0Landon, M. K., Green, C. T., Belitz, K., Singleton, M. J., & Esser, B. K. (2011). Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA. Hydrogeology Journal, 19(6), 1203–1224. https://doi.org/10.1007/s10040-011-0750-1Lasagna, M., De Luca, D. A., & Franchino, E. (2016a). Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environmental Earth Sciences, 75, 1–16. https://doi.org/10.1007/s12665-015-5039-6Lasagna, M., De Luca, D. A., & Franchino, E. (2016b). The role of physical and biological processes in aquifers and their importance on groundwater vulnerability to nitrate pollution. Environmental Earth Sciences. https://doi.org/10.1007/s12665-016-5768-1Lawniczak, A. E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A., & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-016-5167-9Li, X., Wu, H., & Qian, H. (2020). Groundwater contamination risk assessment using intrinsic vulnerability, pollution loading and groundwater value: a case study in Yinchuan plain, China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-020-10221-4Li, Y., Wang, M., Chen, X., Cui, S., Hofstra, N., Kroeze, C., Ma, L., Xu, W., Zhang, Q., Zhang, F., & Strokal, M. (2022). Multi-pollutant assessment of river pollution from livestock production worldwide. Water Research, 209, 117906. https://doi.org/10.1016/j.watres.2021.117906Liao, L., Green, C. T., Bekins, B. A., & Böhlke, J. K. (2012). Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resources Research. https://doi.org/10.1029/2011WR011008Liu, S., Kuhn, C., Amatulli, G., Aho, K., Butman, D. E., Allen, G. H., Lin, P., Pan, M., Yamazaki, D., Brinkerhoff, C., Gleason, C., Xia, X., & Raymond, P. A. (2022). The importance of hydrology in routing terrestrial carbon to the atmosphere via global streams and rivers. Proceedings of the National Academy of Sciences of the United States of America, 119, e2106322119. https://doi.org/10.1073/pnas.2106322119Liu, Z., Li, Y., Xiao, Y., Wang, T., & Lang, Q. (2017). Effects of riverbed and lake bottom sediment thickness on infiltration and purification of reclaimed water. Environmental Earth Sciences, 76, 1–12. https://doi.org/10.1007/s12665-016-6377-8Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P., & Lettenmaier, D. P. (2013). A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. Journal of Climate. https://doi.org/10.1175/JCLI-D-12-00508.1Lockhart, K. M., King, A. M., & Harter, T. (2013). Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. Journal of Contaminant Hydrology, 151, 140–154. https://doi.org/10.1016/j.jconhyd.2013.05.008Lu, C., Zhang, J., Tian, H., Crumpton, W. G., Helmers, M. J., Cai, W.-J., Hopkinson, C. S., & Lohrenz, S. E. (2020). Increased extreme precipitation challenges nitrogen load management to the Gulf of Mexico. Communications Earth & Environment, 1(1), 21. https://doi.org/10.1038/s43247-020-00020-7Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence, 2, 56–67. https://doi.org/10.1038/s42256-019-0138-9Lynch, J., & Pierrehumbert, R. (2019). Climate Impacts of Cultured Meat and Beef Cattle. Frontiers in Sustainable Food Systems, 3(February), 1–11. https://doi.org/10.3389/fsufs.2019.00005Machiwal, D., Jha, M. K., Singh, V. P., & Mohan, C. (2018). Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. In Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2018.08.009Markets and Markets. (2019). Cultured Meat Market by Source (Poultry, Beef, Seafood, Pork, and Duck), End-use (Nuggets, Burgers, Meatballs, Sausages, Hot Dogs), and Region (North America, Europe, Asia Pacific, Middle East & Africa, South America) - Global Forecast to 2032. https://www.marketsandmarkets.com/Market-Reports/cultured-meat-market-204524444.htmlMarques, J., Liu, J., Cunha, M. C., Van Meter, K. J., & Basu, N. B. (2021). Nitrogen legacies in anthropogenic landscapes: a case study in the Mondego Basin in Portugal. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16725-xMatiatos, I. (2016). Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Science of the Total Environment, 541, 802–814. https://doi.org/10.1016/j.scitotenv.2015.09.134Matiatos, I., Wassenaar, L. I., Monteiro, L. R., Venkiteswaran, J. J., Gooddy, D. C., Boeckx, P., Sacchi, E., Yue, F., Michalski, G., Alonso-Hernández, C., Biasi, C., Bouchaou, L., Edirisinghe, N. V, Fadhullah, W., Fianko, J. R., García-Moya, A., Kazakis, N., Li, S.-L., Luu, M. T. N., … Welti, N. (2021). Global patterns of nitrate isotope composition in rivers and adjacent aquifers reveal reactive nitrogen cascading. Communications Earth & Environment, 2(1), 52. https://doi.org/10.1038/s43247-021-00121-xMattick, C. S., Landis, A. E., Allenby, B. R., & Genovese, N. J. (2015). Anticipatory Life Cycle Analysis of In Vitro Biomass Cultivation for Cultured Meat Production in the United States. Environmental Science and Technology, 49, 11941–11949. https://doi.org/10.1021/acs.est.5b01614Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H. W., Bouwman, A. F., Fekete, B. M., Kroeze, C., & Van Drecht, G. (2010). Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software. https://doi.org/10.1016/j.envsoft.2010.01.007McDonough, L. K., Santos, I. R., Andersen, M. S., O’Carroll, D. M., Rutlidge, H., Meredith, K., Oudone, P., Bridgeman, J., Gooddy, D. C., Sorensen, J. P. R., Lapworth, D. J., MacDonald, A. M., Ward, J., & Baker, A. (2020). Changes in global groundwater organic carbon driven by climate change and urbanization. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-14946-1McIsaac, G. F., David, M. B., Gertner, G. Z., & Goolsby, D. A. (2001). Eutrophication: Nitrate flux in the Mississippi River. Nature, 414, 166–167. https://doi.org/10.1038/35102672McLay, C. D. A., Dragten, R., Sparling, G., & Selvarajah, N. (2001). Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environmental Pollution. https://doi.org/10.1016/S0269-7491(01)00111-7Mekonnen, M. M., & Hoekstra, A. . (2010). The green, blue and grey water footprint of farm animals and animal products. Volume 1: Main Report. Unesco Value of Water Research Report Series No. 48, 1(48).Mekonnen, M. M., Neale, C. M. U., Ray, C., Erickson, G. E., & Hoekstra, A. Y. (2019). Water productivity in meat and milk production in the US from 1960 to 2016. Environment International, 132, 1–15. https://doi.org/10.1016/j.envint.2019.105084Merrington, G., Nfa, L. W., Parkinson, R., Redman, M., & Winder, L. (2002). Agricultural pollution: environmental problems and practical solutions. CRC Press.Messier, K. P., Wheeler, D. C., Flory, A. R., Jones, R. R., Patel, D., Nolan, B. T., & Ward, M. H. (2019). Modeling groundwater nitrate exposure in private wells of North Carolina for the Agricultural Health Study. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.11.022Michael, H. A., & Voss, C. I. (2008). Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0710477105Miller, O. L., Putman, A. L., Alder, J., Miller, M., Jones, D. K., & Wise, D. R. (2021). Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States. Journal of Hydrology X. https://doi.org/10.1016/j.hydroa.2021.100074Min, L., Liu, M., Wu, L., & Shen, Y. (2022). Groundwater Storage Recovery Raises the Risk of Nitrate Pollution. Environmental Science and Technology, 56, 8–9. https://doi.org/10.1021/acs.est.1c07278Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., & Vereecken, H. (2017). A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves. Earth System Science Data. https://doi.org/10.5194/essd-9-529-2017Moore, P. A., Daniel, T. C., Sharpley, A. N., & Wood, C. W. (1995). Poultry manure management: Environmentally sound options. Journal of Soil and Water Conversation.Mueller, D. K., & Helsel, D. R. (1996). Nutrients in the nation’s waters - too much of a good thing? US Geological Survey Circular. https://doi.org/10.3133/cir1136Mueller, N. D., & Lassaletta, L. (2020). Nitrogen challenges in global livestock systems. Nature Food, 1, 400–401. https://doi.org/10.1038/s43016-020-0117-7Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E. G., Gregory, S. V., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., … Thomas, S. M. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452, 202–205. https://doi.org/10.1038/nature06686Mutz, M., & Rohde, A. (2003). Processes of surface-subsurface water exchange in a low energy sand-bed stream. International Review of Hydrobiology. https://doi.org/10.1002/iroh.200390026Nachtergaele, F., Velthuizen, H. van, Verelst, L., Batjes, N., Dijkshoorn, K., Engelen, V. van, Fischer, G., Jones, A., Montanarella, L., Petri, M., Prieler, S., Shi, X., Teixeira, E., & Wiberg, D. (2012). Harmonized World Soil Database Version 1.2. Food and Agriculture Organization of the United Nations (FAO). 19th World Congress of Soil Science, Soil Solutions for a Changing World.Nelson, R., & Heo, J. (2020). Monitoring environmental parameters with oil and gas developments in the Permian Basin, USA. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17114026Neukum, C., & Azzam, R. (2012). Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeology Journal. https://doi.org/10.1007/s10040-011-0827-xNeves, G. L., Barbosa, M. A. G. A., Anjinho, P. da S., Guimarães, T. T., das Virgens Filho, J. S., & Mauad, F. F. (2020). Evaluation of the impacts of climate change on streamflow through hydrological simulation and under downscaling scenarios: case study in a watershed in southeastern Brazil. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-08671-xNolan, B. T., & Hitt, K. J. (2006). Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States. Environmental Science and Technology, 40(24), 7834–7840. https://doi.org/10.1021/es060911uNolan, B. T., Hitt, K. J., & Ruddy, B. C. (2002). Probability of nitrate contamination of recently recharged groundwaters in the conterminous United States. Environmental Science and Technology, 36(10), 2138–2145. https://doi.org/10.1021/es0113854Nolan, B. T., Ruddy, B. C., Hitt, K. J., & Helsel, D. R. (1997). Risk of nitrate in groundwaters of the United States - A national perspective. Environmental Science and Technology, 31(8), 2229–2236. https://doi.org/10.1021/es960818dNygren, M., Giese, M., Kløve, B., Haaf, E., Rossi, P. M., & Barthel, R. (2020). Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. Journal of Hydrology X, 8, 100062. https://doi.org/10.1016/j.hydroa.2020.100062Omara, P., Aula, L., Oyebiyi, F., & Raun, W. R. (2019). World Cereal Nitrogen Use Efficiency Trends: Review and Current Knowledge. Agrosystems, Geosciences and Environment, 2, 1–8. https://doi.org/10.2134/age2018.10.0045Omer, A., Elagib, N. A., Zhuguo, M., Saleem, F., & Mohammed, A. (2020). Water scarcity in the Yellow River Basin under future climate change and human activities. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.141446Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental Impact of the Production of Mealworms as a Protein Source for Humans - A Life Cycle Assessment. PLoS ONE, 7, 1–5. https://doi.org/10.1371/journal.pone.0051145Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10(12), 1–20. https://doi.org/10.1371/journal.pone.0144601Ouedraogo, I., Defourny, P., & Vanclooster, M. (2019). Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeology Journal. https://doi.org/10.1007/s10040-018-1900-5Pan, W., Huang, Q., & Huang, G. (2018). Nitrogen and organics removal during riverbank filtration along a reclaimed water restored river in Beijing, China. Water (Switzerland). https://doi.org/10.3390/w10040491Panno, S. V., Kelly, W. R., Martinsek, A. T., & Hackley, K. C. (2006). Estimating background and threshold nitrate concentrations using probability graphs. Ground Water, 44, 697–709. https://doi.org/10.1111/j.1745-6584.2006.00240.xPasini, S., Torresan, S., Rizzi, J., Zabeo, A., Critto, A., & Marcomini, A. (2012). Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: A spatially resolved regional risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.06.096Pauloo, R. A., Fogg, G. E., Guo, Z., & Harter, T. (2021). Anthropogenic basin closure and groundwater salinization (ABCSAL). Journal of Hydrology, 593, 125787. https://doi.org/10.1016/j.jhydrol.2020.125787Pennino, M. J., Leibowitz, S. G., Compton, J. E., Hill, R. A., & Sabo, R. D. (2020). Patterns and predictions of drinking water nitrate violations across the conterminous United States. The Science of the Total Environment, 722, 137661. https://doi.org/10.1016/j.scitotenv.2020.137661Peters, C. J., Picardy, J. A., Darrouzet-Nardi, A., & Griffin, T. S. (2014). Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems. Agricultural Systems, 130, 35–43. https://doi.org/10.1016/j.agsy.2014.06.005Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Marti, E., Bowden, W. B., Valett, H. M., Hershey, A. E., McDowell, W. H., Dodds, W. K., Hamilton, S. K., Gregory, S., & Morrall, D. D. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292, 86–90. https://doi.org/10.1126/science.1056874Pisciotta, A., Cusimano, G., & Favara, R. (2015). Groundwater nitrate risk assessment using intrinsic vulnerability methods: A comparative study of environmental impact by intensive farming in the Mediterranean region of Sicily, Italy. Journal of Geochemical Exploration. https://doi.org/10.1016/j.gexplo.2015.05.002Pórcel, R. A. D., Schüth, C., León-Gómez, H. De, Hoppe, A., & Lehné, R. (2014). Land-Use Impact and Nitrate Analysis to Validate DRASTIC Vulnerability Maps Using a GIS Platform of Pablillo River Basin, Linares, N.L., Mexico. International Journal of Geosciences. https://doi.org/10.4236/ijg.2014.512120Profeta, A., Baune, M. C., Smetana, S., Broucke, K., Van Royen, G., Weiss, J., Hieke, S., Heinz, V., & Terjung, N. (2021). Consumer preferences for meat blended with plant proteins – Empirical findings from Belgium. Future Foods, 4, 100088. https://doi.org/10.1016/j.fufo.2021.100088Puckett, L. J., Tesoriero, A. J., & Dubrovsky, N. M. (2011). Nitrogen contamination of surficial aquifers-A growing legacy. Environmental Science and Technology. https://doi.org/10.1021/es1038358Puckett, L. J., Zamora, C., Essaid, H., Wilson, J. T., Johnson, H. M., Brayton, M. J., & Vogel, J. R. (2008). Transport and Fate of Nitrate at the Ground-Water/Surface-Water Interface. Journal of Environmental Quality, 37, 1034–1050. https://doi.org/10.2134/jeq2006.0550Ransom, K. M., Nolan, B. T., A. Traum, J., Faunt, C. C., Bell, A. M., Gronberg, J. A. M., Wheeler, D. C., Z. Rosecrans, C., Jurgens, B., Schwarz, G. E., Belitz, K., M. Eberts, S., Kourakos, G., & Harter, T. (2017). A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.05.192Ransom, K. M., Nolan, B. T., Stackelberg, P. E., Belitz, K., & Fram, M. S. (2022). Machine learning predictions of nitrate in groundwater used for drinking supply in the conterminous United States. Science of the Total Environment, 807, 151065. https://doi.org/10.1016/j.scitotenv.2021.151065Reitz, M., Sanford, W. E., Senay, G. B., & Cazenas, J. (2017). Annual Estimates of Recharge, Quick-Flow Runoff, and Evapotranspiration for the Contiguous U.S. Using Empirical Regression Equations. Journal of the American Water Resources Association. https://doi.org/10.1111/1752-1688.12546Ribaudo, M., Kaplan, J. D., Christensen, L. A., Gollehon, N., Johansson, R., Breneman, V. E., Aillery, M., Agapoff, J., & Peters, M. (2011). Manure Management for Water Quality Costs to Animal Feeding Operations of Applying Manure Nutrients to Land. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.757884Richards, R. P., Baker, D. B., Creamer, N. L., Kramer, J. W., Ewing, D. E., Merryfield, B. J., & Wallrabenstein, L. K. (1996). Well Water Quality, Well Vulnerability, and Agricultural Contamination in the Midwestern United States. Journal of Environmental Quality. https://doi.org/10.2134/jeq1996.00472425002500030002xRichi, E. B., Baumer, B., Conrad, B., Darioli, R., Schmid, A., & Keller, U. (2015). Health risks associated with meat consumption: A review of epidemiological studies. International Journal for Vitamin and Nutrition Research, 85, 70–78. https://doi.org/10.1024/0300-9831/a000224Ritchie, H. (2017). How much of the world’s land would we need in order to feed the global population with the average diet of a given country? Our World In Data - Agricultural Land by Global Diets.Ritchie, H., Rosado, P., & Roser, M. (2017). Meat and Dairy Production. Our World in Data.Rivers, C. N., Barrett, M. H., Hiscock, K. M., Dennis, P. P., Feast, N. A., & Lerner, D. N. (1996). Use of nitrogen isotopes to identify nitrogen contamination of the sherwood sandstone aquifer beneath the city of Nottingham, United Kingdom. Hydrogeology Journal, 4, 90–102. https://doi.org/10.1007/s100400050099Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232. https://doi.org/10.1016/j.watres.2008.07.020Robertson, D. M., & Saad, D. A. (2019). Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment loads in streams of the midwestern United States. In Scientific Investigations Report. https://doi.org/10.3133/sir20195114Rohmer, S. U. K., Gerdessen, J. C., Claassen, G. D. H., Bloemhof, J. M., & van ’t Veer, P. (2018). A nutritional comparison and production perspective: Reducing the environmental footprint of the future. Journal of Cleaner Production, 196, 1407–1417. https://doi.org/10.1016/j.jclepro.2018.06.125Rotz, C. A., Asem-Hiablie, S., Place, S., & Thoma, G. (2019). Environmental footprints of beef cattle production in the United States. Agricultural Systems, 169, 1–13. https://doi.org/10.1016/j.agsy.2018.11.005Rubio, N. R., Xiang, N., & Kaplan, D. L. (2020). Plant-based and cell-based approaches to meat production. Nature Communications, 11, 6276. https://doi.org/10.1038/s41467-020-20061-yRuddy, B. C., Lorenz, D. L., & Mueller, D. K. (2006). County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982-2001. US Geological Survey, Washington, DC.Ruehl, C. R., Fisher, A. T., Los Huertos, M., Wankel, S. D., Wheat, C. G., Kendall, C., Hatch, C. E., & Shennan, C. (2007). Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream. Journal of the North American Benthological Society, 26, 191–206. https://doi.org/10.1899/0887-3593(2007)26
[191:NDWTPR]2.0.CO;2Sahoo, S., Russo, T. A., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research, 53, 3878–3895. https://doi.org/10.1002/2016WR019933Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., & Pradhan, B. (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.07.054Salvagiotti, F., Cassman, K. G., Specht, J. E., Walters, D. T., Weiss, A., & Dobermann, A. (2008). Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research, 108(1), 1–13. https://doi.org/10.1016/j.fcr.2008.03.001Sarkar, S., Mukherjee, A., Gupta, S. D., Bhanja, S. N., & Bhattacharya, A. (2022). Predicting Regional-Scale Elevated Groundwater Nitrate Contamination Risk Using Machine Learning on Natural and Human-Induced Factors. ACS ES&T Engineering, 2(4), 689–702. https://doi.org/10.1021/acsestengg.1c00360Sauer, T. J., Alexander, R. B., Brahana, J. V., & Smith, R. A. (2008). The Importance and Role of Watersheds in the Transport of Nitrogen. Nitrogen in the Environment.Schwarz, G. E., Hoos, A. B., Alexander, R. B., & Smith, R. A. (2006). The SPARROW Surface Water-Quality Model: Theory, Applications and User Documentation. U.S. Geological Survey, Techniques and Methods.Schwarz, G. E., & Wieczorek, M. E. (2018). Database of modified routing for NHDPlus version 2.1 flowlines: ENHDPlusV2_us. U.S. Geological Survey Data Release. https://doi.org/10.5066/P9PA63SMSecunda, S., Collin, M. L., & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management, 54(1), 39–57. https://doi.org/https://doi.org/10.1006/jema.1998.0221Sharafatmandrad, M., & Khosravi Mashizi, A. (2021). Temporal and Spatial Assessment of Supply and Demand of the Water-yield Ecosystem Service for Water Scarcity Management in Arid to Semi-arid Ecosystems. Water Resources Management. https://doi.org/10.1007/s11269-020-02706-1Shepherd, R. G. (1989). Correlations of Permeability and Grain Size. Groundwater, 27, 633–638. https://doi.org/10.1111/j.1745-6584.1989.tb00476.xSingh, A., Srivastav, S. K., Kumar, S., & Chakrapani, G. J. (2015). A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-015-4558-5Singh, N. K., & Basu, N. B. (2022). The human factor in seasonal streamflows across natural and managed watersheds of North America. Nature Sustainability, 5, 397–405. https://doi.org/10.1038/s41893-022-00848-1Singh, P., Kumar, R., Sabapathy, S. N., & Bawa, A. S. (2008). Functional and edible uses of soy protein products. Comprehensive Reviews in Food Science and Food Safety, 7(1), 14–28. https://doi.org/10.1111/j.1541-4337.2007.00025.xSinha, E., & Michalak, A. M. (2016). Precipitation dominates interannual variability of riverine nitrogen loading across the continental United States. Environmental Science and Technology, 50, 12874–12884. https://doi.org/10.1021/acs.est.6b04455Smith, R. A., Schwarz, G. E., & Alexander, R. B. (1997). Regional interpretation of water-quality monitoring data. Water Resources Research. https://doi.org/10.1029/97WR02171Sohl, T., Reker, R., Bouchard, M., Sayler, K., Dornbierer, J., Wika, S., Quenzer, R., & Friesz, A. (2016). Modeled historical land use and land cover for the conterminous United States. Journal of Land Use Science. https://doi.org/10.1080/1747423X.2016.1147619Song, J., Chen, X., Cheng, C., Summerside, S., & Wen, F. (2007). Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geophysical Research Letters. https://doi.org/10.1029/2007GL029254Sorichetta, A., Masetti, M., Ballabio, C., Sterlacchini, S., & Beretta, G. Pietro. (2011). Reliability of groundwater vulnerability maps obtained through statistical methods. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2010.12.009Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock’s long shadow: Environmental issues and options. In FAO.Tang, C., Chen, J., Shindo, S., Sakura, Y., Zhang, W., & Shen, Y. (2004). Assessment of groundwater contamination by nitrates associated with wastewater irrigation: A case study in Shijiazhuang region, China. Hydrological Processes. https://doi.org/10.1002/hyp.5531Till, B., & Trayler, K. (2000). Sediment in streams. Water and Rivers Commission.Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. https://doi.org/10.1073/pnas.1116437108Tilman, D., & Clark, M. (2014). Global diets link environmental sustainability and human health. Nature, 515, 518–522. https://doi.org/10.1038/nature13959Toetz, D. (2006). Nitrate in ground and surface waters in the vicinity of a concentrated animal feeding operation. Archiv Fur Hydrobiologie, 166, 67–77. https://doi.org/10.1127/0003-9136/2006/0166-0067Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of the Total Environment, 650, 2751–2760. https://doi.org/10.1016/j.scitotenv.2018.10.018Tuomisto, H. L., & Teixeira De Mattos, M. J. (2011). Environmental impacts of cultured meat production. Environmental Science and Technology, 45(14), 6117–6123. https://doi.org/10.1021/es200130uTurkeltaub, T., Kurtzman, D., & Dahan, O. (2016). Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-20-3099-2016Turner, D., & Sumner, M. (1978). The influence of initial soil moisture content on field measured infiltration rates. Water SA, 4(1), 18–24.U.S. Geological Survey. (2003). Principal Aquifers of the 48 Conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands. U.S. Geological Survey Digital Data.Uhan, J., Vižintin, G., & Pezdič, J. (2011). Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: Lower Savinja Valley case study (Slovenia). Environmental Earth Sciences. https://doi.org/10.1007/s12665-010-0821-yUSEPA. (2015). Drinking Water Contaminants: National Primary Drinking Water Regulations. US EPA Website Http://Water.Epa.Gov/Drink/Contaminants/Index.Cfm.Uwizeye, A., de Boer, I. J. M., Opio, C. I., Schulte, R. P. O., Falcucci, A., Tempio, G., Teillard, F., Casu, F., Rulli, M., Galloway, J. N., Leip, A., Erisman, J. W., Robinson, T. P., Steinfeld, H., & Gerber, P. J. (2020). Nitrogen emissions along global livestock supply chains. Nature Food, 1, 437–446. https://doi.org/10.1038/s43016-020-0113-yvan Beynen, P., Brinkmann, R., & van Beynen, K. (2012). A sustainability index for karst environments. Journal of Cave and Karst Studies. https://doi.org/10.4311/2011SS0217Van Drecht, G., Bouwman, A. F., Knoop, J. M., Beusen, A. H. W., & Meinardi, C. R. (2003). Global modeling of the fate of nitrogen from point and nonpoint sources in soils, groundwater, and surface water. Global Biogeochemical Cycles, 17, e2003GB002060. https://doi.org/10.1029/2003gb002060Van Meter, K. J. (2016). The Nitrogen Legacy: Understanding Time Lags in Catchment Response as a Function of Hydrologic and Biogeochemical Controls. University of Waterloo.Van Stempvoort, D., Ewert, L., & Wassenaar, L. (1993). Aquifer vulnerability index: A gis - compatible method for groundwater vulnerability mapping. Canadian Water Resources Journal. https://doi.org/10.4296/cwrj1801025Velthof, G. L., Oudendag, D., Witzke, H. P., Asman, W. A. H., Klimont, Z., & Oenema, O. (2009). Integrated Assessment of Nitrogen Losses from Agriculture in EU-27 using MITERRA-EUROPE. Journal of Environmental Quality, 38, 402–417. https://doi.org/10.2134/jeq2008.0108Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. In Environmental Science and Technology. https://doi.org/10.1021/es405118yWade, M., & Hoelle, J. (2020). A review of edible insect industrialization: scales of production and implications for sustainability. Environmental Research Letters, 15(12), 123013. https://doi.org/10.1088/1748-9326/aba1c1Wakida, F. T., & Lerner, D. N. (2005). Non-agricultural sources of groundwater nitrate: A review and case study. Water Research. https://doi.org/10.1016/j.watres.2004.07.026Wang, F., Dai, Z., Takahashi, I., & Tanida, Y. (2020). Soil moisture response to water infiltration in a 1-D slope soil column model. Engineering Geology. https://doi.org/10.1016/j.enggeo.2020.105482Wang, J., He, J., & Chen, H. (2012). Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2012.06.005Wang, Y. (2020). Urban land and sustainable resource use: Unpacking the countervailing effects of urbanization on water use in China, 1990–2014. Land Use Policy. https://doi.org/10.1016/j.landusepol.2019.104307Ward, M. H., Jones, R. R., Brender, J. D., de Kok, T. M., Weyer, P. J., Nolan, B. T., Villanueva, C. M., & van Breda, S. G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 1557. https://doi.org/10.3390/ijerph15071557Ward, M. H., Mark, S. D., Cantor, K. P., Weisenburger, D. D., Correa-Villasenor, A., Law, G. R., Cartwright, R., Parslow, R., & McKinney, P. (2000). Non-Hodgkin’s lymphoma and nitrate in drinking water (multiple letters)
[2]. In Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech.54.10.772WEF. (2019a). Meat: The Future Series - Alternative Proteins. In World Economic Forum (WEF). https://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdfWEF. (2019b). Meat: the Future series Options for the Livestock Sector in Developing and Emerging Economies to 2030 and Beyond. https://www3.weforum.org/docs/White_Paper_Livestock_Emerging Economies.pdfWidory, D., Kloppmann, W., Chery, L., Bonnin, J., Rochdi, H., & Guinamant, J. L. (2004). Nitrate in groundwater: An isotopic multi-tracer approach. Journal of Contaminant Hydrology. https://doi.org/10.1016/j.jconhyd.2003.10.010Wieczorek, M. E., Jackson, S. E., & Schwarz, G. E. (2018). Select Attributes for NHDPlus Version 2.1 Reach Catchments and Modified Network Routed Upstream Watersheds for the Conterminous United States. U.S. Geological Survey Data Release. https://doi.org/10.5066/F7765D7V.Wilson, S. R., Close, M. E., Abraham, P., Sarris, T. S., Banasiak, L., Stenger, R., & Hadfield, J. (2020). Achieving unbiased predictions of national-scale groundwater redox conditions via data oversampling and statistical learning. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.135877Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Ground Water Surface Water and A Single Resource. USGS Publications.Wise, D. R. (2019). Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment loads in streams of the Pacific region of the United States. In Scientific Investigations Report (Version 1.). https://doi.org/10.3133/sir20195112Wise, D. R., Anning, D. W., & Miller, O. L. (2019). Spatially referenced models of streamflow and nitrogen, phosphorus, and suspended-sediment transport in streams of the southwestern United States. In Scientific Investigations Report (Version 1.). https://doi.org/10.3133/sir20195106Wroblicky, G. J., Campana, M. E., Valett, H. M., & Dahm, C. N. (1998). Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resources Research, 34, 317–328. https://doi.org/10.1029/97WR03285Xia, Y., Kwon, H., & Wander, M. (2021). Developing county-level data of nitrogen fertilizer and manure inputs for corn production in the United States. Journal of Cleaner Production, 309, 126957. https://doi.org/10.1016/j.jclepro.2021.126957Xie, Y., Crosbie, R., Yang, J., Wu, J., & Wang, W. (2018). Usefulness of Soil Moisture and Actual Evapotranspiration Data for Constraining Potential Groundwater Recharge in Semiarid Regions. Water Resources Research, 54, 4929–4945. https://doi.org/10.1029/2018WR023257Xu, X., Sharma, P., Shu, S., Lin, T. S., Ciais, P., Tubiello, F. N., Smith, P., Campbell, N., & Jain, A. K. (2021). Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2, 724–732. https://doi.org/10.1038/s43016-021-00358-xYing, H., Xue, Y., Yan, K., Wang, Y., Yin, Y., Liu, Z., Zhang, Q., Tian, X., Li, Z., Liu, Y., & Cui, Z. (2020). Safeguarding Food Supply and Groundwater Safety for Maize Production in China. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b05642Yu, C., Yao, Y., Hayes, G., Zhang, B., & Zheng, C. (2010). Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2010.09.002Zang, Y., Hou, X., Li, Z., Li, P., Sun, Y., Yu, B., & Li, M. (2022). Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Water Research, 226, 119213. https://doi.org/https://doi.org/10.1016/j.watres.2022.119213Zhang, B., Tian, H., Lu, C., Dangal, S. R. S., Yang, J., & Pan, S. (2017). Global manure nitrogen production and application in cropland during 1860-2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth System Science Data, 9, 667–678. https://doi.org/10.5194/essd-9-667-2017Zhang, X., Davidson, E. A., Mauzerall, D. L., Searchinger, T. D., Dumas, P., & Shen, Y. (2015). Managing nitrogen for sustainable development. Nature, 528, 51–59. https://doi.org/10.1038/nature15743Zhang, Y. K., & Schilling, K. E. (2006). Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2005.06.044Zhang, Y., Liu, Y., Zhou, A., & Zhang, L. (2021). Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods. Water Research, 206, 117754. https://doi.org/10.1016/j.watres.2021.117754Zhao, Y., Zhang, J., Chen, Z., & Zhang, W. (2019). Groundwater contamination risk assessment based on intrinsic vulnerability, pollution source assessment, and groundwater function zoning. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2018.1476965Zheng, C., & Liu, J. (2013). China’s “Love canal” moment? In Science. https://doi.org/10.1126/science.340.6134.810-aZhou, J., Gu, B., Schlesinger, W. H., & Ju, X. (2016). Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports. https://doi.org/10.1038/srep25088Zhu, Y., Zhai, Y., Du, Q., Teng, Y., Wang, J., & Yang, G. (2019). The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrological Processes. https://doi.org/10.1002/hyp.13376Zirkle, K. W., Nolan, B. T., Jones, R. R., Weyer, P. J., Ward, M. H., & Wheeler, D. C. (2016). Assessing the relationship between groundwater nitrate and animal feeding operations in Iowa (USA). Science of the Total Environment, 566–567, 1062–1068. https://doi.org/10.1016/j.scitotenv.2016.05.130Zuo, R., Meng, L., Wang, B., Wang, J., Ding, F., Guo, X., Jin, S., & Teng, Y. (2018). Pollution risk assessment based on source apportionment in a groundwater resource area, NE China. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2017.1410428

Academic Degree Assessment Sub committee
Domestic book classification number
Data Source
Document TypeThesis
DepartmentSchool of Environmental Science and Engineering
Recommended Citation
GB/T 7714
Files in This Item:
File Name/Size DocType Version Access License
30026860-詹阳-环境科学与工程学(8921KB) Restricted Access--Fulltext Requests
Related Services
Fulltext link
Recommend this item
Usage statistics
Export to Endnote
Export to Excel
Export to Csv
Altmetrics Score
Google Scholar
Similar articles in Google Scholar
[詹阳]'s Articles
Baidu Scholar
Similar articles in Baidu Scholar
[詹阳]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[詹阳]'s Articles
Terms of Use
No data!
Social Bookmark/Share
No comment.

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.